BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1050 related articles for article (PubMed ID: 33297952)

  • 1. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses.
    Tsochatzidis L; Koutla P; Costaridou L; Pratikakis I
    Comput Methods Programs Biomed; 2021 Mar; 200():105913. PubMed ID: 33422854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
    Hasan MK; Calvet L; Rabbani N; Bartoli A
    Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified U-Net convolutional neural network for segmenting periprostatic adipose tissue based on contour feature learning.
    Wang G; Hu J; Zhang Y; Xiao Z; Huang M; He Z; Chen J; Bai Z
    Heliyon; 2024 Feb; 10(3):e25030. PubMed ID: 38318024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convolutional neural networks for mammography: advances, challenges and applications.
    Abdelhafiz D; Yang C; Ammar R; Nabavi S
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):281. PubMed ID: 31167642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TrEnD: A transformer-based encoder-decoder model with adaptive patch embedding for mass segmentation in mammograms.
    Liu D; Wu B; Li C; Sun Z; Zhang N
    Med Phys; 2023 May; 50(5):2884-2899. PubMed ID: 36609788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FS-UNet: Mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening.
    Pi J; Qi Y; Lou M; Li X; Wang Y; Xu C; Ma Y
    Comput Biol Med; 2021 Oct; 137():104800. PubMed ID: 34507155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning.
    Guo X; Zhang N; Guo J; Zhang H; Hao Y; Hang J
    Med Phys; 2019 Dec; 46(12):5666-5676. PubMed ID: 31610020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Convolutional Neural Networks for breast cancer screening.
    Chougrad H; Zouaki H; Alheyane O
    Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.
    Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distance map regularized CNN for cardiac cine MR image segmentation.
    Dangi S; Linte CA; Yaniv Z
    Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.