These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 33297954)
1. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features. Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954 [TBL] [Abstract][Full Text] [Related]
2. RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix. Chandra AA; Sharma A; Dehzangi A; Tsunoda T Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33419274 [TBL] [Abstract][Full Text] [Related]
3. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704 [TBL] [Abstract][Full Text] [Related]
4. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647 [TBL] [Abstract][Full Text] [Related]
5. EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction. Chandra AA; Sharma A; Dehzangi A; Tsunoda T BMC Genomics; 2019 Apr; 19(Suppl 9):984. PubMed ID: 30999859 [TBL] [Abstract][Full Text] [Related]
6. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC. Ju Z; Cao JZ; Gu H J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349 [TBL] [Abstract][Full Text] [Related]
7. Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features. Chen QY; Tang J; Du PF Mol Biosyst; 2017 May; 13(5):874-882. PubMed ID: 28396891 [TBL] [Abstract][Full Text] [Related]
8. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection. Sohrawordi M; Hossain MA; Hasan MAM Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35929355 [TBL] [Abstract][Full Text] [Related]
9. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707 [TBL] [Abstract][Full Text] [Related]
10. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines. Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456 [TBL] [Abstract][Full Text] [Related]
11. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243 [TBL] [Abstract][Full Text] [Related]
12. predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance. Ahmed S; Rahman A; Hasan MAM; Islam MKB; Rahman J; Ahmad S PLoS One; 2021; 16(4):e0249396. PubMed ID: 33793659 [TBL] [Abstract][Full Text] [Related]
13. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688 [TBL] [Abstract][Full Text] [Related]
14. Phogly-PseAAC: Prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity. Xu Y; Ding YX; Ding J; Wu LY; Deng NY J Theor Biol; 2015 Aug; 379():10-5. PubMed ID: 25913879 [TBL] [Abstract][Full Text] [Related]
15. PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids. Chandra A; Sharma A; Dehzangi A; Ranganathan S; Jokhan A; Chou KC; Tsunoda T Sci Rep; 2018 Dec; 8(1):17923. PubMed ID: 30560923 [TBL] [Abstract][Full Text] [Related]
16. SuccSite: Incorporating Amino Acid Composition and Informative k-spaced Amino Acid Pairs to Identify Protein Succinylation Sites. Kao HJ; Nguyen VN; Huang KY; Chang WC; Lee TY Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):208-219. PubMed ID: 32592791 [TBL] [Abstract][Full Text] [Related]
17. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition. Weng SL; Kao HJ; Huang CH; Lee TY PLoS One; 2017; 12(6):e0179529. PubMed ID: 28662047 [TBL] [Abstract][Full Text] [Related]
18. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs. Bui VM; Lu CT; Ho TT; Lee TY Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868 [TBL] [Abstract][Full Text] [Related]
19. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. Chen YJ; Lu CT; Huang KY; Wu HY; Chen YJ; Lee TY PLoS One; 2015; 10(4):e0118752. PubMed ID: 25849935 [TBL] [Abstract][Full Text] [Related]
20. Prediction of neddylation sites from protein sequences and sequence-derived properties. Yavuz AS; Sözer NB; Sezerman OU BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S9. PubMed ID: 26679222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]