These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 33298247)

  • 1. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy.
    Jin HS; Park Y
    BMB Rep; 2021 Jan; 54(1):2-11. PubMed ID: 33298247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of the CD226 Axis in Cancer Immunotherapy.
    Conner M; Hance KW; Yadavilli S; Smothers J; Waight JD
    Front Immunol; 2022; 13():914406. PubMed ID: 35812451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the "PVR-TIGIT axis" with immune checkpoint therapies.
    Gorvel L; Olive D
    F1000Res; 2020; 9():. PubMed ID: 32489646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of PVR/PVRL2 with TIGIT/DNAM-1 as a novel immune checkpoint axis and therapeutic target in cancer.
    Stamm H; Wellbrock J; Fiedler W
    Mamm Genome; 2018 Dec; 29(11-12):694-702. PubMed ID: 30132062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy.
    Blake SJ; Dougall WC; Miles JJ; Teng MW; Smyth MJ
    Clin Cancer Res; 2016 Nov; 22(21):5183-5188. PubMed ID: 27620276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy.
    Zeng T; Cao Y; Jin T; Tian Y; Dai C; Xu F
    J Exp Clin Cancer Res; 2021 Sep; 40(1):285. PubMed ID: 34507594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy.
    Wu B; Zhong C; Lang Q; Liang Z; Zhang Y; Zhao X; Yu Y; Zhang H; Xu F; Tian Y
    J Exp Clin Cancer Res; 2021 Aug; 40(1):267. PubMed ID: 34433460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TIGIT axis: novel immune checkpoints in anti-leukemia immunity.
    Qiu D; Liu X; Wang W; Jiang X; Wu X; Zheng J; Zhou K; Kong X; Wu X; Jin Z
    Clin Exp Med; 2023 Jun; 23(2):165-174. PubMed ID: 35419661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting novel inhibitory receptors in cancer immunotherapy.
    Ding QQ; Chauvin JM; Zarour HM
    Semin Immunol; 2020 Jun; 49():101436. PubMed ID: 33288379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy.
    Chiang EY; Mellman I
    J Immunother Cancer; 2022 Apr; 10(4):. PubMed ID: 35379739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD226
    Jin HS; Ko M; Choi DS; Kim JH; Lee DH; Kang SH; Kim I; Lee HJ; Choi EK; Kim KP; Yoo C; Park Y
    Cancer Immunol Res; 2020 Jul; 8(7):912-925. PubMed ID: 32265229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions.
    Chan CJ; Martinet L; Gilfillan S; Souza-Fonseca-Guimaraes F; Chow MT; Town L; Ritchie DS; Colonna M; Andrews DM; Smyth MJ
    Nat Immunol; 2014 May; 15(5):431-8. PubMed ID: 24658051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer.
    Peng YP; Xi CH; Zhu Y; Yin LD; Wei JS; Zhang JJ; Liu XC; Guo S; Fu Y; Miao Y
    Oncotarget; 2016 Oct; 7(41):66586-66594. PubMed ID: 27626490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma.
    Lupo KB; Matosevic S
    J Hematol Oncol; 2020 Jun; 13(1):76. PubMed ID: 32532329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy.
    Sanchez-Correa B; Valhondo I; Hassouneh F; Lopez-Sejas N; Pera A; Bergua JM; Arcos MJ; Bañas H; Casas-Avilés I; Durán E; Alonso C; Solana R; Tarazona R
    Cancers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer.
    Chan CJ; Andrews DM; Smyth MJ
    Curr Opin Immunol; 2012 Apr; 24(2):246-51. PubMed ID: 22285893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD96 as a Potential Immune Regulator in Cancers.
    Feng S; Isayev O; Werner J; Bazhin AV
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIGIT: a novel immunotherapy target moving from bench to bedside.
    Solomon BL; Garrido-Laguna I
    Cancer Immunol Immunother; 2018 Nov; 67(11):1659-1667. PubMed ID: 30232519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of CD112R as a novel checkpoint for human T cells.
    Zhu Y; Paniccia A; Schulick AC; Chen W; Koenig MR; Byers JT; Yao S; Bevers S; Edil BH
    J Exp Med; 2016 Feb; 213(2):167-76. PubMed ID: 26755705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.