These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33298516)

  • 1. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields.
    Li C; Lau GC; Yuan H; Aggarwal A; Dominguez VL; Liu S; Sai H; Palmer LC; Sather NA; Pearson TJ; Freedman DE; Amiri PK; de la Cruz MO; Stupp SI
    Sci Robot; 2020 Dec; 5(49):. PubMed ID: 33298516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation.
    Li C; Iscen A; Sai H; Sato K; Sather NA; Chin SM; Álvarez Z; Palmer LC; Schatz GC; Stupp SI
    Nat Mater; 2020 Aug; 19(8):900-909. PubMed ID: 32572204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel.
    Zhao Y; Lo CY; Ruan L; Pi CH; Kim C; Alsaid Y; Frenkel I; Rico R; Tsao TC; He X
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H; Javey A
    Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation.
    Zhu QL; Du C; Dai Y; Daab M; Matejdes M; Breu J; Hong W; Zheng Q; Wu ZL
    Nat Commun; 2020 Oct; 11(1):5166. PubMed ID: 33056999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots.
    Palagi S; Mark AG; Reigh SY; Melde K; Qiu T; Zeng H; Parmeggiani C; Martella D; Sanchez-Castillo A; Kapernaum N; Giesselmann F; Wiersma DS; Lauga E; Fischer P
    Nat Mater; 2016 Jun; 15(6):647-53. PubMed ID: 26878315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial annelid robot driven by soft actuators.
    Jung K; Koo JC; Nam JD; Lee YK; Choi HR
    Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors.
    Shen Q; Wang T; Kim KJ
    Bioinspir Biomim; 2015 Sep; 10(5):055007. PubMed ID: 26414228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-actuated hydrogel walkers with dual responsive legs.
    Morales D; Palleau E; Dickey MD; Velev OD
    Soft Matter; 2014 Mar; 10(9):1337-48. PubMed ID: 24651405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-stimuli-responsive programmable biomimetic actuator.
    Dong Y; Wang J; Guo X; Yang S; Ozen MO; Chen P; Liu X; Du W; Xiao F; Demirci U; Liu BF
    Nat Commun; 2019 Sep; 10(1):4087. PubMed ID: 31501430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magneto- and photo-responsive hydrogels from the co-assembly of peptides, cyclodextrins, and superparamagnetic nanoparticles.
    Nowak BP; Ravoo BJ
    Faraday Discuss; 2019 Oct; 219(0):220-228. PubMed ID: 31297494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfiber-Shaped Programmable Materials with Stimuli-Responsive Hydrogel.
    Takeuchi N; Nakajima S; Yoshida K; Kawano R; Hori Y; Onoe H
    Soft Robot; 2022 Feb; 9(1):89-97. PubMed ID: 33275532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity.
    Chen P; Ruan Q; Nasseri R; Zhang H; Xi X; Xia H; Xu G; Xie Q; Yi C; Sun Z; Shahsavan H; Zhang W
    Adv Sci (Weinh); 2022 Dec; 9(34):e2204730. PubMed ID: 36253140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials.
    Fan W; Shan C; Guo H; Sang J; Wang R; Zheng R; Sui K; Nie Z
    Sci Adv; 2019 Apr; 5(4):eaav7174. PubMed ID: 31016242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bending of Responsive Hydrogel Sheets Guided by Field-Assembled Microparticle Endoskeleton Structures.
    Morales D; Bharti B; Dickey MD; Velev OD
    Small; 2016 May; 12(17):2283-90. PubMed ID: 26969914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic polymer composite artificial bacterial flagella.
    Peyer KE; Siringil E; Zhang L; Nelson BJ
    Bioinspir Biomim; 2014 Nov; 9(4):046014. PubMed ID: 25405833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Electrolyte-Free Conducting Polymer Actuator that Displays Electrothermal Bending and Flapping Wing Motions under a Magnetic Field.
    Uh K; Yoon B; Lee CW; Kim JM
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1289-96. PubMed ID: 26717199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly.
    Zhang J; Ren Z; Hu W; Soon RH; Yasa IC; Liu Z; Sitti M
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.