These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33298847)

  • 41. Excitonic Effect Drives Ultrafast Dynamics in van der Waals Heterostructures.
    Liu J; Zhang X; Lu G
    Nano Lett; 2020 Jun; 20(6):4631-4637. PubMed ID: 32432887
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides.
    Liu GB; Xiao D; Yao Y; Xu X; Yao W
    Chem Soc Rev; 2015 May; 44(9):2643-63. PubMed ID: 25474725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction.
    Ross JS; Rivera P; Schaibley J; Lee-Wong E; Yu H; Taniguchi T; Watanabe K; Yan J; Mandrus D; Cobden D; Yao W; Xu X
    Nano Lett; 2017 Feb; 17(2):638-643. PubMed ID: 28006106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing the Interlayer Exciton Physics in a MoS
    Baranowski M; Surrente A; Klopotowski L; Urban JM; Zhang N; Maude DK; Wiwatowski K; Mackowski S; Kung YC; Dumcenco D; Kis A; Plochocka P
    Nano Lett; 2017 Oct; 17(10):6360-6365. PubMed ID: 28895745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interlayer excitons in a bulk van der Waals semiconductor.
    Arora A; Drüppel M; Schmidt R; Deilmann T; Schneider R; Molas MR; Marauhn P; Michaelis de Vasconcellos S; Potemski M; Rohlfing M; Bratschitsch R
    Nat Commun; 2017 Sep; 8(1):639. PubMed ID: 28935879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Double Indirect Interlayer Exciton in a MoSe
    Hanbicki AT; Chuang HJ; Rosenberger MR; Hellberg CS; Sivaram SV; McCreary KM; Mazin II; Jonker BT
    ACS Nano; 2018 May; 12(5):4719-4726. PubMed ID: 29727170
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides.
    Selig M; Berghäuser G; Raja A; Nagler P; Schüller C; Heinz TF; Korn T; Chernikov A; Malic E; Knorr A
    Nat Commun; 2016 Nov; 7():13279. PubMed ID: 27819288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 2D Material Infrared Photonics and Plasmonics.
    Elbanna A; Jiang H; Fu Q; Zhu JF; Liu Y; Zhao M; Liu D; Lai S; Chua XW; Pan J; Shen ZX; Wu L; Liu Z; Qiu CW; Teng J
    ACS Nano; 2023 Mar; 17(5):4134-4179. PubMed ID: 36821785
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.
    Mai C; Barrette A; Yu Y; Semenov YG; Kim KW; Cao L; Gundogdu K
    Nano Lett; 2014 Jan; 14(1):202-6. PubMed ID: 24325650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strain-Dependent Band Splitting and Spin-Flip Dynamics in Monolayer WS
    Yang S; Chen W; Sa B; Guo Z; Zheng J; Pei J; Zhan H
    Nano Lett; 2023 Apr; 23(7):3070-3077. PubMed ID: 36995751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intravalley Spin-Flip Relaxation Dynamics in Single-Layer WS
    Wang Z; Molina-Sánchez A; Altmann P; Sangalli D; De Fazio D; Soavi G; Sassi U; Bottegoni F; Ciccacci F; Finazzi M; Wirtz L; Ferrari AC; Marini A; Cerullo G; Dal Conte S
    Nano Lett; 2018 Nov; 18(11):6882-6891. PubMed ID: 30264571
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir.
    Brotons-Gisbert M; Branny A; Kumar S; Picard R; Proux R; Gray M; Burch KS; Watanabe K; Taniguchi T; Gerardot BD
    Nat Nanotechnol; 2019 May; 14(5):442-446. PubMed ID: 30858522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrical control of charged carriers and excitons in atomically thin materials.
    Wang K; De Greve K; Jauregui LA; Sushko A; High A; Zhou Y; Scuri G; Taniguchi T; Watanabe K; Lukin MD; Park H; Kim P
    Nat Nanotechnol; 2018 Feb; 13(2):128-132. PubMed ID: 29335564
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manipulation of Valley Pseudospin by Selective Spin Injection in Chiral Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures.
    Chen Y; Ma J; Liu Z; Li J; Duan X; Li D
    ACS Nano; 2020 Nov; 14(11):15154-15160. PubMed ID: 33108721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures.
    Du J; Xia C; Xiong W; Wang T; Jia Y; Li J
    Nanoscale; 2017 Nov; 9(44):17585-17592. PubMed ID: 29114682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots.
    Fouladi-Oskouei J; Shojaei S; Liu Z
    J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A room-temperature polariton light-emitting diode based on monolayer WS
    Gu J; Chakraborty B; Khatoniar M; Menon VM
    Nat Nanotechnol; 2019 Nov; 14(11):1024-1028. PubMed ID: 31548689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resonant optical Stark effect in monolayer WS
    Cunningham PD; Hanbicki AT; Reinecke TL; McCreary KM; Jonker BT
    Nat Commun; 2019 Dec; 10(1):5539. PubMed ID: 31804477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides.
    Kang M; Kim B; Ryu SH; Jung SW; Kim J; Moreschini L; Jozwiak C; Rotenberg E; Bostwick A; Kim KS
    Nano Lett; 2017 Mar; 17(3):1610-1615. PubMed ID: 28118710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.