These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33299197)

  • 1. Operation of an optical atomic clock with a Brillouin laser subsystem.
    Loh W; Stuart J; Reens D; Bruzewicz CD; Braje D; Chiaverini J; Juodawlkis PW; Sage JM; McConnell R
    Nature; 2020 Dec; 588(7837):244-249. PubMed ID: 33299197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a trapped-ion atomic clock in space.
    Burt EA; Prestage JD; Tjoelker RL; Enzer DG; Kuang D; Murphy DW; Robison DE; Seubert JM; Wang RT; Ely TA
    Nature; 2021 Jul; 595(7865):43-47. PubMed ID: 34194022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Optical Clock Performance for GNSS Positioning.
    Boldbaatar E; Grant D; Choy S; Zaminpardaz S; Holden L
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastable Free-Space Laser Links for a Global Network of Optical Atomic Clocks.
    Gozzard DR; Howard LA; Dix-Matthews BP; Karpathakis SFE; Gravestock CT; Schediwy SW
    Phys Rev Lett; 2022 Jan; 128(2):020801. PubMed ID: 35089751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency ratio measurements at 18-digit accuracy using an optical clock network.
    Boulder Atomic Clock Optical Network (BACON) Collaboration*
    Nature; 2021 Mar; 591(7851):564-569. PubMed ID: 33762766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects and challenges for squeezing-enhanced optical atomic clocks.
    Schulte M; Lisdat C; Schmidt PO; Sterr U; Hammerer K
    Nat Commun; 2020 Nov; 11(1):5955. PubMed ID: 33235213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency ratio of the
    Zhang C; Ooi T; Higgins JS; Doyle JF; von der Wense L; Beeks K; Leitner A; Kazakov GA; Li P; Thirolf PG; Schumm T; Ye J
    Nature; 2024 Sep; 633(8028):63-70. PubMed ID: 39232152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New bounds on dark matter coupling from a global network of optical atomic clocks.
    Wcisło P; Ablewski P; Beloy K; Bilicki S; Bober M; Brown R; Fasano R; Ciuryło R; Hachisu H; Ido T; Lodewyck J; Ludlow A; McGrew W; Morzyński P; Nicolodi D; Schioppo M; Sekido M; Le Targat R; Wolf P; Zhang X; Zjawin B; Zawada M
    Sci Adv; 2018 Dec; 4(12):eaau4869. PubMed ID: 30539146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entanglement on an optical atomic-clock transition.
    Pedrozo-Peñafiel E; Colombo S; Shu C; Adiyatullin AF; Li Z; Mendez E; Braverman B; Kawasaki A; Akamatsu D; Xiao Y; Vuletić V
    Nature; 2020 Dec; 588(7838):414-418. PubMed ID: 33328668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards space-deployable laser stabilization systems based on vibration-insensitive cubic cavities with crystalline coatings.
    Cole GD; Koller S; Greve C; Barwood GP; Deutsch C; Gaynor P; Ghulinyan M; Gill P; Hendricks R; Hill I; Kundermann S; Le Goff R; Lecomte S; Meier C; Pepponi G; Schilt S; Stenzel C; Sütterlin R; Voss K; Zhukov A
    Opt Express; 2024 Feb; 32(4):5380-5396. PubMed ID: 38439266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic clock performance enabling geodesy below the centimetre level.
    McGrew WF; Zhang X; Fasano RJ; Schäffer SA; Beloy K; Nicolodi D; Brown RC; Hinkley N; Milani G; Schioppo M; Yoon TH; Ludlow AD
    Nature; 2018 Dec; 564(7734):87-90. PubMed ID: 30487601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passion for precision.
    Hänsch TW
    Chemphyschem; 2006 Jun; 7(6):1170-87. PubMed ID: 16637090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic clocks for geodesy.
    Mehlstäubler TE; Grosche G; Lisdat C; Schmidt PO; Denker H
    Rep Prog Phys; 2018 Jun; 81(6):064401. PubMed ID: 29667603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optical clock based on a single trapped 199Hg+ ion.
    Diddams SA; Udem T; Bergquist JC; Curtis EA; Drullinger RE; Hollberg L; Itano WM; Lee WD; Oates CW; Vogel KR; Wineland DJ
    Science; 2001 Aug; 293(5531):825-8. PubMed ID: 11452082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical-Clock-Based Time Scale.
    Yao J; Sherman JA; Fortier T; Leopardi H; Parker T; McGrew W; Zhang X; Nicolodi D; Fasano R; Schäffer S; Beloy K; Savory J; Romisch S; Oates C; Diddams S; Ludlow A; Levine J
    Phys Rev Appl; 2019; 12(4):. PubMed ID: 33102625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization.
    Lim J; Savchenkov AA; Dale E; Liang W; Eliyahu D; Ilchenko V; Matsko AB; Maleki L; Wong CW
    Nat Commun; 2017 Mar; 8(1):8. PubMed ID: 28364116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Frequency-Doubled 1.5- m Lasers for High-Performance Rb Clocks.
    Almat N; Moreno W; Pellaton M; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):919-926. PubMed ID: 29856708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.