BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33299484)

  • 1. One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity.
    Bosica G; Demanuele K; Padrón JM; Puerta A
    Beilstein J Org Chem; 2020; 16():2862-2869. PubMed ID: 33299484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity.
    Bosica G; Demanuele K; Padrón JM; Puerta A
    Beilstein J Org Chem; 2021; 17():2026-2027. PubMed ID: 34457074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progresses in the Multicomponent Synthesis of Dihydropyridines by Applying Sustainable Catalysts Under Green Conditions.
    Sonali Anantha IS; Kerru N; Maddila S; Jonnalagadda SB
    Front Chem; 2021; 9():800236. PubMed ID: 34993177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonium metavanadate (NH
    Rahimi J; Niksefat M; Heidari M; Naderi M; Abbasi H; Tajik Ijdani M; Maleki A
    Sci Rep; 2022 Aug; 12(1):13687. PubMed ID: 35953520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Synthesis of Novel Biginelli and Hantzsch Products Sourced from Biorenewable Furfurals Using Gluconic Acid Aqueous Solution as the Green Organocatalyst.
    Anchan HN; Naik C P; Bhat NS; Kumari M; Dutta S
    ACS Omega; 2023 Sep; 8(37):34077-34083. PubMed ID: 37744814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical Synthesis of 1,4-Dihydropyridines on Heterogeneous Sulfonicmodified Silica (SBA-15-SO
    Hung TQ; Phuc BV; Loan PTT; Lan Nhi DT; Nguyen H; Xuan Vu H; Do DV; Dang TT
    Curr Org Synth; 2023; 20(8):880-889. PubMed ID: 36856172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted combinatorial synthesis of hexa-substituted 1,4-dihydropyridines scaffolds using one-pot two-step multicomponent reaction followed by a S-alkylation.
    Li M; Zuo Z; Wen L; Wang S
    J Comb Chem; 2008; 10(3):436-41. PubMed ID: 18412399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microwave-assisted bismuth nitrate-catalyzed unique route toward 1,4-dihydropyridines.
    Bandyopadhyay D; Maldonado S; Banik BK
    Molecules; 2012 Mar; 17(3):2643-62. PubMed ID: 22391599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction.
    Sharma MG; Rajani DP; Patel HM
    R Soc Open Sci; 2017 Jun; 4(6):170006. PubMed ID: 28680664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO
    Dekamin MG; Kazemi E; Karimi Z; Mohammadalipoor M; Naimi-Jamal MR
    Int J Biol Macromol; 2016 Dec; 93(Pt A):767-774. PubMed ID: 27608546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi Metal-Organic Framework (Ce/Ni-BTC) as Heterogeneous Catalyst for the Green Synthesis of Substituted Chromeno[4, 3-b]quinolone under Solvent Free Condition.
    Sayahi MH; Yadollahi M; Hamad SM; Ganjali MR; Aghazadeh M; Mahdavi M; Bahadorikhalili S
    Curr Org Synth; 2021; 18(5):475-482. PubMed ID: 33480346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Biopolymer-Based Catalyst for the Multicomponent Synthesis of
    Bosica G; Abdilla R
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor.
    Bagley MC; Fusillo V; Jenkins RL; Lubinu MC; Mason C
    Beilstein J Org Chem; 2013; 9():1957-68. PubMed ID: 24204407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition-Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s.
    Zhang Q; Zhang Y; Zhao Y; Yang B; Fu C; Wei Y; Tao L
    ACS Macro Lett; 2015 Jan; 4(1):128-132. PubMed ID: 35596385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on chemoselective synthesis of 1,4- and 1,2-dihydropyridine derivatives by a Hantzsch-like reaction: a combined experimental and DFT study.
    Li P; Wang S; Tian N; Yan H; Wang J; Song X
    Org Biomol Chem; 2021 May; 19(17):3882-3892. PubMed ID: 33949438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Facile and Catalyst-Free Microwave-Promoted Multicomponent Reaction for the Synthesis of Functionalised 1,4-Dihydropyridines With Superb Selectivity and Yields.
    Kerru N; Maddila S; Jonnalagadda SB
    Front Chem; 2021; 9():638832. PubMed ID: 33869142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Highly Chemically Robust 3D Interpenetrated MOF Heterogeneous Catalyst for the Synthesis of Hantzsch 1,4-Dihydropyridines and Drug Molecules.
    Sahoo R; Pramanik B; Mondal S; Das MC
    Small; 2024 Jun; 20(25):e2309281. PubMed ID: 38191986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe3O4@SiO2-NH2 Nanocomposite as a Robust and Effective Catalyst for the One-pot Synthesis of Polysubstituted Dihydropyridines.
    Ghasemzadeh MA; Abdollahi-Basir MH
    Acta Chim Slov; 2016; 63(3):627-37. PubMed ID: 27640390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 5-alkylated barbituric acids and 3-alkylated indoles via microwave-assisted three-component reactions in solvent-free conditions using Hantzsch 1,4-dihydropyridines as reducing agents.
    Baruah B; Seetham Naidu P; Borah P; Bhuyan PJ
    Mol Divers; 2012 May; 16(2):291-8. PubMed ID: 22297663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source.
    Song S; Wang Y; Yu F
    Top Curr Chem (Cham); 2023 Sep; 381(5):30. PubMed ID: 37749452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.