These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3329970)

  • 1. Saccharomyces cerevisiae strains sensitive to inorganic mercury. III. Tyrosine uptake.
    Ono B; Sakamoto E; Yamaguchi K
    Curr Genet; 1987; 11(5):399-406. PubMed ID: 3329970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae strains sensitive to inorganic mercury. II. Effect of glucose.
    Sakamoto E; Urata H; Ono B
    Curr Genet; 1985; 10(3):187-95. PubMed ID: 3916808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae strains sensitive to inorganic mercury. I. Effect of tyrosine.
    Ono B; Sakamoto E
    Curr Genet; 1985; 10(3):179-85. PubMed ID: 3916807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe.
    Bonini BM; Van Dijck P; Thevelein JM
    Biochim Biophys Acta; 2003 Sep; 1606(1-3):83-93. PubMed ID: 14507429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercurial toxicity in yeast: glucose uptake, glycolytic and fermentative functions remain unimpaired.
    Brunker RL
    Microbios; 1979; 26(105-106):147-52. PubMed ID: 399318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake.
    Luyten K; de Koning W; Tesseur I; Ruiz MC; Ramos J; Cobbaert P; Thevelein JM; Hohmann S
    Eur J Biochem; 1993 Oct; 217(2):701-13. PubMed ID: 8223613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mercury and organomercurials on cellular glucose utilization: a study using resting mercury-resistant yeast cells.
    Ghosh SK; Chaudhuri J; Gachhui R; Mandal A; Ghosh S
    J Appl Microbiol; 2007 Feb; 102(2):375-83. PubMed ID: 17241342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae.
    Lagunas R; Moreno E
    Yeast; 1992 Feb; 8(2):107-15. PubMed ID: 1532877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles.
    Ramos J; Szkutnicka K; Cirillo VP
    J Bacteriol; 1989 Jun; 171(6):3539-44. PubMed ID: 2656659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of organic and inorganic mercury to Saccharomyces cerevisiae.
    Kungolos A; Aoyama I; Muramoto S
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):149-55. PubMed ID: 10375417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.
    Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH
    Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dbf2 is implicated in a Cbt1-dependent pathway following a shift from glucose to galactose or non-fermentable carbon sources in Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    Mol Gen Genet; 1999 Mar; 261(2):402-7. PubMed ID: 10102376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae.
    Beullens M; Mbonyi K; Geerts L; Gladines D; Detremerie K; Jans AW; Thevelein JM
    Eur J Biochem; 1988 Feb; 172(1):227-31. PubMed ID: 2831059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of glucose repression in Saccharomyces cerevisiae by pulsing glucose to a galactose-limited continuous culture.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1992 Dec; 8(12):1077-87. PubMed ID: 1338140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae.
    Bailey RB; Woodword A
    Mol Gen Genet; 1984; 193(3):507-12. PubMed ID: 6323921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae.
    Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L
    Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar uptake during early ascosporulation in Saccharomyces cerevisiae.
    Ota A
    Microbios; 1983; 38(151):33-41. PubMed ID: 6355777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glucose-induced polyphosphoinositides turnover in Saccharomyces cerevisiae is not dependent on the CDC25-RAS mediated signal transduction pathway.
    Frascotti G; Baroni D; Martegani E
    FEBS Lett; 1990 Nov; 274(1-2):19-22. PubMed ID: 2174802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.