These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33299996)

  • 1. Ca
    Khelashvili G; Plante A; Doktorova M; Weinstein H
    bioRxiv; 2021 Jan; ():. PubMed ID: 33299996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca
    Khelashvili G; Plante A; Doktorova M; Weinstein H
    Biophys J; 2021 Mar; 120(6):1105-1119. PubMed ID: 33631204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mechanistic Understanding of the Modes of Ca
    Carten JD; Khelashvili G; Bidon MK; Straus MR; Tang T; Jaimes JA; Whittaker GR; Weinstein H; Daniel S
    ACS Infect Dis; 2024 Feb; 10(2):398-411. PubMed ID: 38270149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca
    Straus MR; Tang T; Lai AL; Flegel A; Bidon M; Freed JH; Daniel S; Whittaker GR
    J Virol; 2020 Jun; 94(13):. PubMed ID: 32295925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding mode of SARS-CoV-2 fusion peptide to human cellular membrane.
    Gorgun D; Lihan M; Kapoor K; Tajkhorshid E
    Biophys J; 2021 Jul; 120(14):2914-2926. PubMed ID: 33675757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Negatively Charged Residues Are Important for the Activity of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides.
    Lai AL; Freed JH
    bioRxiv; 2021 Dec; ():. PubMed ID: 34909776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of SARS-CoV-2 Fusion Peptide to Host Endosome and Plasma Membrane.
    Schaefer SL; Jung H; Hummer G
    J Phys Chem B; 2021 Jul; 125(28):7732-7741. PubMed ID: 34255499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SARS-CoV-2 Fusion Peptide has a Greater Membrane Perturbating Effect than SARS-CoV with Highly Specific Dependence on Ca
    Lai AL; Freed JH
    J Mol Biol; 2021 May; 433(10):166946. PubMed ID: 33744314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negatively charged residues in the membrane ordering activity of SARS-CoV-1 and -2 fusion peptides.
    Lai AL; Freed JH
    Biophys J; 2022 Jan; 121(2):207-227. PubMed ID: 34929193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Binding Modes of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides to Cell Membranes: The Influence of Peptide Helix Length.
    Shen H; Wu Z; Chen L
    J Phys Chem B; 2022 Jun; ():. PubMed ID: 35658454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.
    Lai AL; Millet JK; Daniel S; Freed JH; Whittaker GR
    J Mol Biol; 2017 Dec; 429(24):3875-3892. PubMed ID: 29056462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-Terminal Lipidation of SARS-CoV-2 Fusion Peptide Reinstates Superior Membrane Fusion Catalytic Ability.
    Sardar A; Bera T; Kumar Samal S; Dewangan N; Kamble M; Guha S; Tarafdar PK
    Chemistry; 2023 Feb; 29(10):e202203034. PubMed ID: 36422064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain.
    Basso LGM; Zeraik AE; Felizatti AP; Costa-Filho AJ
    Biochim Biophys Acta Biomembr; 2021 Nov; 1863(11):183697. PubMed ID: 34274319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and dynamic characterization of the interaction of the putative fusion peptide of the S2 SARS-CoV virus protein with lipid membranes.
    Guillén J; de Almeida RF; Prieto M; Villalaín J
    J Phys Chem B; 2008 Jun; 112(23):6997-7007. PubMed ID: 18489147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane structure of the human immunodeficiency virus gp41 fusion peptide by molecular dynamics simulation. II. The glycine mutants.
    Wong TC
    Biochim Biophys Acta; 2003 Jan; 1609(1):45-54. PubMed ID: 12507757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Small Molecule Entry Inhibitors Targeting the Fusion Peptide of SARS-CoV-2 Spike Protein.
    Hu X; Chen CZ; Xu M; Hu Z; Guo H; Itkin Z; Shinn P; Ivin P; Leek M; Liang TJ; Shen M; Zheng W; Hall MD
    ACS Med Chem Lett; 2021 Aug; 12(8):1267-1274. PubMed ID: 34394844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains.
    Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T
    mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction.
    Nelson-Sathi S; Umasankar PK; Sreekumar E; Nair RR; Joseph I; Nori SRC; Philip JS; Prasad R; Navyasree KV; Ramesh S; Pillai H; Ghosh S; Santosh Kumar TR; Pillai MR
    BMC Mol Cell Biol; 2022 Jan; 23(1):2. PubMed ID: 34991443
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Shekhar N; Sarma P; Prajapat M; Avti P; Kaur H; Raja A; Singh H; Bhattacharya A; Sharma S; Kumar S; Prakash A; Medhi B
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32963099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the pre-hairpin intermediate of the spike protein.
    Yang K; Wang C; Kreutzberger AJB; Ojha R; Kuivanen S; Couoh-Cardel S; Muratcioglu S; Eisen TJ; White KI; Held RG; Subramanian S; Marcus K; Pfuetzner RA; Esquivies L; Doyle CA; Kuriyan J; Vapalahti O; Balistreri G; Kirchhausen T; Brunger AT
    bioRxiv; 2022 Aug; ():. PubMed ID: 35982670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.