These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 33300042)
1. Predicting regulatory variants using a dense epigenomic mapped CNN model elucidated the molecular basis of trait-tissue associations. Pei G; Hu R; Dai Y; Manuel AM; Zhao Z; Jia P Nucleic Acids Res; 2021 Jan; 49(1):53-66. PubMed ID: 33300042 [TBL] [Abstract][Full Text] [Related]
2. DeepFun: a deep learning sequence-based model to decipher non-coding variant effect in a tissue- and cell type-specific manner. Pei G; Hu R; Jia P; Zhao Z Nucleic Acids Res; 2021 Jul; 49(W1):W131-W139. PubMed ID: 34048560 [TBL] [Abstract][Full Text] [Related]
3. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. Li Y; Kellis M Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109 [TBL] [Abstract][Full Text] [Related]
4. Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals. Wesolowska-Andersen A; Zhuo Yu G; Nylander V; Abaitua F; Thurner M; Torres JM; Mahajan A; Gloyn AL; McCarthy MI Elife; 2020 Jan; 9():. PubMed ID: 31985400 [TBL] [Abstract][Full Text] [Related]
5. Strategies to fine-map genetic associations with lipid levels by combining epigenomic annotations and liver-specific transcription profiles. Lo KS; Vadlamudi S; Fogarty MP; Mohlke KL; Lettre G Genomics; 2014 Aug; 104(2):105-12. PubMed ID: 24997396 [TBL] [Abstract][Full Text] [Related]
6. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits. Chawla A; Nagy C; Turecki G Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299232 [TBL] [Abstract][Full Text] [Related]
7. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model. Hu R; Pei G; Jia P; Zhao Z Methods; 2021 May; 189():44-53. PubMed ID: 31672653 [TBL] [Abstract][Full Text] [Related]
8. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU. Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652 [TBL] [Abstract][Full Text] [Related]
9. Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning. Lai B; Qian S; Zhang H; Zhang S; Kozlova A; Duan J; Xu J; He X PLoS Comput Biol; 2022 May; 18(5):e1010011. PubMed ID: 35576194 [TBL] [Abstract][Full Text] [Related]
10. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain. Handel AE; Gallone G; Zameel Cader M; Ponting CP Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116 [TBL] [Abstract][Full Text] [Related]
11. An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies. Zhao J; Cheng F; Jia P; Cox N; Denny JC; Zhao Z Genome Med; 2018 Jan; 10(1):7. PubMed ID: 29378629 [TBL] [Abstract][Full Text] [Related]
12. DeepHistone: a deep learning approach to predicting histone modifications. Yin Q; Wu M; Liu Q; Lv H; Jiang R BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126 [TBL] [Abstract][Full Text] [Related]
13. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144 [TBL] [Abstract][Full Text] [Related]
14. TVAR: assessing tissue-specific functional effects of non-coding variants with deep learning. Yang H; Chen R; Wang Q; Wei Q; Ji Y; Zhong X; Li B Bioinformatics; 2022 Oct; 38(20):4697-4704. PubMed ID: 36063453 [TBL] [Abstract][Full Text] [Related]
15. VannoPortal: multiscale functional annotation of human genetic variants for interrogating molecular mechanism of traits and diseases. Huang D; Zhou Y; Yi X; Fan X; Wang J; Yao H; Sham PC; Hao J; Chen K; Li MJ Nucleic Acids Res; 2022 Jan; 50(D1):D1408-D1416. PubMed ID: 34570217 [TBL] [Abstract][Full Text] [Related]
16. Enrichment of colorectal cancer associations in functional regions: Insight for using epigenomics data in the analysis of whole genome sequence-imputed GWAS data. Bien SA; Auer PL; Harrison TA; Qu C; Connolly CM; Greenside PG; Chen S; Berndt SI; Bézieau S; Kang HM; Huyghe J; Brenner H; Casey G; Chan AT; Hopper JL; Banbury BL; Chang-Claude J; Chanock SJ; Haile RW; Hoffmeister M; Fuchsberger C; Jenkins MA; Leal SM; Lemire M; Newcomb PA; Gallinger S; Potter JD; Schoen RE; Slattery ML; Smith JD; Le Marchand L; White E; Zanke BW; Abeçasis GR; Carlson CS; Peters U; Nickerson DA; Kundaje A; Hsu L; PLoS One; 2017; 12(11):e0186518. PubMed ID: 29161273 [TBL] [Abstract][Full Text] [Related]
17. Beyond association: successes and challenges in linking non-coding genetic variation to functional consequences that modulate Alzheimer's disease risk. Novikova G; Andrews SJ; Renton AE; Marcora E Mol Neurodegener; 2021 Apr; 16(1):27. PubMed ID: 33882988 [TBL] [Abstract][Full Text] [Related]
18. cepip: context-dependent epigenomic weighting for prioritization of regulatory variants and disease-associated genes. Li MJ; Li M; Liu Z; Yan B; Pan Z; Huang D; Liang Q; Ying D; Xu F; Yao H; Wang P; Kocher JA; Xia Z; Sham PC; Liu JS; Wang J Genome Biol; 2017 Mar; 18(1):52. PubMed ID: 28302177 [TBL] [Abstract][Full Text] [Related]
19. Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Higgins GA; Allyn-Feuer A; Athey BD Pharmacogenomics; 2015; 16(14):1565-83. PubMed ID: 26340055 [TBL] [Abstract][Full Text] [Related]
20. Epigenomics and genotype-phenotype association analyses reveal conserved genetic architecture of complex traits in cattle and human. Liu S; Yu Y; Zhang S; Cole JB; Tenesa A; Wang T; McDaneld TG; Ma L; Liu GE; Fang L BMC Biol; 2020 Jul; 18(1):80. PubMed ID: 32620158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]