BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33300159)

  • 21. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy.
    Son HW; Yokota T
    Methods Mol Biol; 2018; 1828():57-68. PubMed ID: 30171534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells.
    Wee CD; Havens MA; Jodelka FM; Hastings ML
    PLoS One; 2014; 9(12):e115205. PubMed ID: 25506695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy.
    Kashima T; Manley JL
    Nat Genet; 2003 Aug; 34(4):460-3. PubMed ID: 12833158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.
    Ottesen EW
    Transl Neurosci; 2017 Jan; 8():1-6. PubMed ID: 28400976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
    Singh NN; Howell MD; Androphy EJ; Singh RN
    Gene Ther; 2017 Sep; 24(9):520-526. PubMed ID: 28485722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication.
    Shkreta L; Delannoy A; Salvetti A; Chabot B
    RNA; 2021 Nov; 27(11):1302-1317. PubMed ID: 34315816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pre-mRNA Splicing Modulation by Antisense Oligonucleotides.
    Singh NN; Luo D; Singh RN
    Methods Mol Biol; 2018; 1828():415-437. PubMed ID: 30171557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A splicing silencer in SMN2 intron 6 is critical in spinal muscular atrophy.
    Wang L; Ji Y; Chen Y; Bai J; Gao P; Feng P
    Hum Mol Genet; 2023 Mar; 32(6):971-983. PubMed ID: 36255739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene.
    Seo J; Singh NN; Ottesen EW; Sivanesan S; Shishimorova M; Singh RN
    PLoS One; 2016; 11(4):e0154390. PubMed ID: 27111068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Splicing-Correcting Therapy for SMA.
    Wan L; Dreyfuss G
    Cell; 2017 Jun; 170(1):5. PubMed ID: 28666123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and function analysis of Sam68 and hnRNP A1 synergy in the exclusion of exon 7 from SMN2 transcripts.
    Nadal M; Anton R; Dorca-Arévalo J; Estébanez-Perpiñá E; Tizzano EF; Fuentes-Prior P
    Protein Sci; 2023 Apr; 32(4):e4553. PubMed ID: 36560896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HnRNP C1/C2 may regulate exon 7 splicing in the spinal muscular atrophy gene SMN1.
    Irimura S; Kitamura K; Kato N; Saiki K; Takeuchi A; Gunadi ; Matsuo M; Nishio H; Lee MJ
    Kobe J Med Sci; 2009 Mar; 54(5):E227-36. PubMed ID: 19628962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.
    Singh NN; Shishimorova M; Cao LC; Gangwani L; Singh RN
    RNA Biol; 2009; 6(3):341-50. PubMed ID: 19430205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA in spinal muscular atrophy: therapeutic implications of targeting.
    Singh RN; Seo J; Singh NN
    Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CASH: a constructing comprehensive splice site method for detecting alternative splicing events.
    Wu W; Zong J; Wei N; Cheng J; Zhou X; Cheng Y; Chen D; Guo Q; Zhang B; Feng Y
    Brief Bioinform; 2018 Sep; 19(5):905-917. PubMed ID: 28387786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy.
    Mitrpant C; Porensky P; Zhou H; Price L; Muntoni F; Fletcher S; Wilton SD; Burghes AH
    PLoS One; 2013; 8(4):e62114. PubMed ID: 23630626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse.
    Porensky PN; Mitrpant C; McGovern VL; Bevan AK; Foust KD; Kaspar BK; Wilton SD; Burghes AH
    Hum Mol Genet; 2012 Apr; 21(7):1625-38. PubMed ID: 22186025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy.
    Vezain M; Saugier-Veber P; Goina E; Touraine R; Manel V; Toutain A; Fehrenbach S; Frébourg T; Pagani F; Tosi M; Martins A
    Hum Mutat; 2010 Jan; 31(1):E1110-25. PubMed ID: 19953646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2).
    Hofmann Y; Lorson CL; Stamm S; Androphy EJ; Wirth B
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9618-23. PubMed ID: 10931943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.