These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33300513)

  • 1. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation.
    Wu HL; Li XB; Tung CH; Wu LZ
    Chem Commun (Camb); 2020 Dec; 56(99):15496-15512. PubMed ID: 33300513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis.
    Ringenberg MR; Ward TR
    Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site.
    Banerjee R; Lipscomb JD
    Acc Chem Res; 2021 May; 54(9):2185-2195. PubMed ID: 33886257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions.
    Kondo M; Masaoka S
    Acc Chem Res; 2020 Oct; 53(10):2140-2151. PubMed ID: 32870647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2
    Amanullah S; Saha P; Nayek A; Ahmed ME; Dey A
    Chem Soc Rev; 2021 Mar; 50(6):3755-3823. PubMed ID: 33514959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting metalloproteins by fragment-based lead discovery.
    Johnson S; Barile E; Farina B; Purves A; Wei J; Chen LH; Shiryaev S; Zhang Z; Rodionova I; Agrawal A; Cohen SM; Osterman A; Strongin A; Pellecchia M
    Chem Biol Drug Des; 2011 Aug; 78(2):211-23. PubMed ID: 21564556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs).
    Zhang S; Zhao Y
    Chem Commun (Camb); 2012 Oct; 48(80):9998-10000. PubMed ID: 22935642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological concepts for catalysis and reactivity: empowering bioinspiration.
    Das A; Hessin C; Ren Y; Desage-El Murr M
    Chem Soc Rev; 2020 Dec; 49(23):8840-8867. PubMed ID: 33107878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research.
    Orio M; Pantazis DA
    Chem Commun (Camb); 2021 Apr; 57(33):3952-3974. PubMed ID: 33885698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-H functionalization reactions catalyzed by artificial metalloenzymes.
    Yu K; Ward TR
    J Inorg Biochem; 2024 Sep; 258():112621. PubMed ID: 38852295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible-light Homogeneous Photocatalytic Conversion of CO
    Rao H; Bonin J; Robert M
    ChemSusChem; 2017 Nov; 10(22):4447-4450. PubMed ID: 28862388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into artificial metalloenzymes towards imine reduction.
    Feng H; Guo X; Zhang H; Chen L; Yin P; Chen C; Duan X; Zhang X; Wei M
    Phys Chem Chem Phys; 2019 Nov; 21(42):23408-23417. PubMed ID: 31625550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Wind in Old Sails: Novel Applications of Triphos-based Transition Metal Complexes as Homogeneous Catalysts for Small Molecules and Renewables Activation.
    Mellone I; Bertini F; Gonsalvi L; Guerriero A; Peruzzini M
    Chimia (Aarau); 2015; 69(6):331-8. PubMed ID: 26507478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for Hydrogen Production.
    Karayilan M; Brezinski WP; Clary KE; Lichtenberger DL; Glass RS; Pyun J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7537-7550. PubMed ID: 30628136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.