These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33300518)

  • 1. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization.
    Koopman W; Sarhan RM; Stete F; Schmitt CNZ; Bargheer M
    Nanoscale; 2020 Dec; 12(48):24411-24418. PubMed ID: 33300518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting plasmon catalyzed conversion of para-nitrothiophenol on monolayer film of Au nanoparticles probed by surface enhanced Raman spectroscopy.
    Weng HY; Guo QH; Wang XR; Xu MM; Yuan YX; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():331-8. PubMed ID: 26056984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfite-triggered surface plasmon-catalyzed reduction of p-nitrothiophenol to p,p'-dimercaptoazobenzene.
    Xu G; Sun Y; Zhang Y; Xia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120282. PubMed ID: 34454131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions.
    Chen K; Wang H
    Nano Lett; 2023 Apr; 23(7):2870-2876. PubMed ID: 36921149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the Inhomogeneity in Plasmonic Catalysis on Supported Gold Nanoparticles Using Surface-Enhanced Raman Scattering Microspectroscopy.
    Zhang Z; Kneipp J
    Anal Chem; 2018 Aug; 90(15):9199-9205. PubMed ID: 29969010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds.
    Zhao LB; Zhang M; Huang YF; Williams CT; Wu DY; Ren B; Tian ZQ
    J Phys Chem Lett; 2014 Apr; 5(7):1259-66. PubMed ID: 26274481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Molecular Patterning by Plasmon-Catalyzed Reactions.
    Zhang Z; Kneipp J
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43708-43714. PubMed ID: 34473478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy.
    Singh R; Yadav V; Siddhanta S
    Phys Chem Chem Phys; 2023 Feb; 25(8):6032-6043. PubMed ID: 36779479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy.
    Zhang Y; Hu Y; Li G; Zhang R
    Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol.
    Xu P; Kang L; Mack NH; Schanze KS; Han X; Wang HL
    Sci Rep; 2013 Oct; 3():2997. PubMed ID: 24141289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of 4-nitrothiophenol with low energy electrons: Implications for plasmon mediated reactions.
    Schürmann R; Luxford TFM; Vinklárek IS; Kočišek J; Zawadzki M; Bald I
    J Chem Phys; 2020 Sep; 153(10):104303. PubMed ID: 32933272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?
    Huh H; Trinh HD; Lee D; Yoon S
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Plasmon-Induced Catalysis of Thiolates and the Impact of Reaction Conditions.
    Yao X; Ehtesabi S; Höppener C; Deckert-Gaudig T; Schneidewind H; Kupfer S; Gräfe S; Deckert V
    J Am Chem Soc; 2024 Feb; 146(5):3031-3042. PubMed ID: 38275163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions.
    Liebig F; Sarhan RM; Sander M; Koopman W; Schuetz R; Bargheer M; Koetz J
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20247-20253. PubMed ID: 28535039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.