These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33300544)

  • 41. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera A; Muñoz P; Steinbusch HWM; Segura-Aguilar J
    ACS Chem Neurosci; 2017 Apr; 8(4):702-711. PubMed ID: 28233992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease.
    Ghosh A; Tyson T; George S; Hildebrandt EN; Steiner JA; Madaj Z; Schulz E; Machiela E; McDonald WG; Escobar Galvis ML; Kordower JH; Van Raamsdonk JM; Colca JR; Brundin P
    Sci Transl Med; 2016 Dec; 8(368):368ra174. PubMed ID: 27928028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.
    Razgado-Hernandez LF; Espadas-Alvarez AJ; Reyna-Velazquez P; Sierra-Sanchez A; Anaya-Martinez V; Jimenez-Estrada I; Bannon MJ; Martinez-Fong D; Aceves-Ruiz J
    PLoS One; 2015; 10(2):e0117391. PubMed ID: 25693197
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation and Analysis of Viral Vector-Mediated Rodent Models for Parkinson's Disease.
    Karikari AA; Koprich JB; Ip CW
    Methods Mol Biol; 2019; 1948():271-286. PubMed ID: 30771185
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The degeneration of dopaminergic synapses in Parkinson's disease: A selective animal model.
    Morales I; Sanchez A; Rodriguez-Sabate C; Rodriguez M
    Behav Brain Res; 2015 Aug; 289():19-28. PubMed ID: 25907749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease.
    Ray A; Kambali M; Ravindranath V
    Antioxid Redox Signal; 2016 Aug; 25(5):252-67. PubMed ID: 27121974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson's disease.
    Zhang J; Yang B; Sun H; Zhou Y; Liu M; Ding J; Fang F; Fan Y; Hu G
    Neurosci Lett; 2016 Feb; 614():7-15. PubMed ID: 26748031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson's disease models.
    Cooper JF; Machiela E; Dues DJ; Spielbauer KK; Senchuk MM; Van Raamsdonk JM
    Sci Rep; 2017 Nov; 7(1):16441. PubMed ID: 29180793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF.
    Nam JH; Park ES; Won SY; Lee YA; Kim KI; Jeong JY; Baek JY; Cho EJ; Jin M; Chung YC; Lee BD; Kim SH; Kim EG; Byun K; Lee B; Woo DH; Lee CJ; Kim SR; Bok E; Kim YS; Ahn TB; Ko HW; Brahmachari S; Pletinkova O; Troconso JC; Dawson VL; Dawson TM; Jin BK
    Brain; 2015 Dec; 138(Pt 12):3610-22. PubMed ID: 26490328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. O-GlcNAc modification inhibits the calpain-mediated cleavage of α-synuclein.
    Levine PM; De Leon CA; Galesic A; Balana A; Marotta NP; Lewis YE; Pratt MR
    Bioorg Med Chem; 2017 Sep; 25(18):4977-4982. PubMed ID: 28487126
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson's disease.
    Coune PG; Bensadoun JC; Aebischer P; Schneider BL
    J Parkinsons Dis; 2011; 1(4):373-87. PubMed ID: 23939344
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electroacupuncture Promotes Recovery of Motor Function and Reduces Dopaminergic Neuron Degeneration in Rodent Models of Parkinson's Disease.
    Lin JG; Chen CJ; Yang HB; Chen YH; Hung SY
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28837077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease.
    Nguyen M; Krainc D
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5576-5581. PubMed ID: 29735704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protective and toxic roles of dopamine in Parkinson's disease.
    Segura-Aguilar J; Paris I; Muñoz P; Ferrari E; Zecca L; Zucca FA
    J Neurochem; 2014 Jun; 129(6):898-915. PubMed ID: 24548101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mutant α-Synuclein Overexpression Induces Stressless Pacemaking in Vagal Motoneurons at Risk in Parkinson's Disease.
    Lasser-Katz E; Simchovitz A; Chiu WH; Oertel WH; Sharon R; Soreq H; Roeper J; Goldberg JA
    J Neurosci; 2017 Jan; 37(1):47-57. PubMed ID: 28053029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson's disease.
    Decressac M; Ulusoy A; Mattsson B; Georgievska B; Romero-Ramos M; Kirik D; Björklund A
    Brain; 2011 Aug; 134(Pt 8):2302-11. PubMed ID: 21712347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic contributions to Parkinson's disease.
    Huang Y; Cheung L; Rowe D; Halliday G
    Brain Res Brain Res Rev; 2004 Aug; 46(1):44-70. PubMed ID: 15297154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures.
    Tsutsumi R; Hori Y; Seki T; Kurauchi Y; Sato M; Oshima M; Hisatsune A; Katsuki H
    Biochem Biophys Res Commun; 2019 Apr; 511(2):427-433. PubMed ID: 30803759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease.
    Yeung PKK; Lai AKW; Son HJ; Zhang X; Hwang O; Chung SSM; Chung SK
    Neurobiol Aging; 2017 Feb; 50():119-133. PubMed ID: 27960106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.