These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33300914)

  • 1.
    Tsai TY; Shen KH; Chang CW; Jovanska L; Wang R; Yeh YC
    Biomater Sci; 2021 Feb; 9(3):985-999. PubMed ID: 33300914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent lanthanide-containing gelatin/polydextran/laponite nanocomposite double-network hydrogels for processing and sensing applications.
    Chiang PY; Zeng PH; Yeh YC
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129359. PubMed ID: 38242388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Multiresponsive Magnetic Nanocomposite Double-Network Hydrogels for Controlled Release Applications.
    Lu CH; Yeh YC
    Small; 2021 Dec; 17(52):e2105997. PubMed ID: 34791796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of versatile poly(xylitol sebacate)-co-poly(ethylene glycol) hydrogels through multifunctional crosslinkers and dynamic bonds for wound healing.
    Yeh YY; Lin YY; Wang TT; Yeh YJ; Chiu TH; Wang R; Bai MY; Yeh YC
    Acta Biomater; 2023 Oct; 170():344-359. PubMed ID: 37607615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Processing of Dynamic Covalently Crosslinked Polydextran/Carbon Dot Nanocomposite Hydrogels with Tailorable Microstructures and Properties.
    Lu CH; Yeh YC
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4289-4300. PubMed ID: 36075100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Dynamic Covalently Crosslinked Alginate Hydrogels with Tunable Properties and Multiple Stimuli-Responsiveness.
    Shen KH; Yeh YY; Chiu TH; Wang R; Yeh YC
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4249-4261. PubMed ID: 36173708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering nanocomposite hydrogels using dynamic bonds.
    Lu CH; Yu CH; Yeh YC
    Acta Biomater; 2021 Aug; 130():66-79. PubMed ID: 34098090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new boronate ester-based crosslinking strategy allows the design of nonswelling and long-term stable dynamic covalent hydrogels.
    Lagneau N; Terriac L; Tournier P; Helesbeux JJ; Viault G; Séraphin D; Halgand B; Loll F; Garnier C; Jonchère C; Rivière M; Tessier A; Lebreton J; Maugars Y; Guicheux J; Le Visage C; Delplace V
    Biomater Sci; 2023 Mar; 11(6):2033-2045. PubMed ID: 36752615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing.
    Heidarian P; Kouzani AZ
    Carbohydr Polym; 2023 Aug; 313():120879. PubMed ID: 37182969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylboronic Acid-polymers for Biomedical Applications.
    Ryu JH; Lee GJ; Shih YV; Kim TI; Varghese S
    Curr Med Chem; 2019; 26(37):6797-6816. PubMed ID: 30295184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery.
    Basu S; Pacelli S; Paul A
    Acta Biomater; 2020 Mar; 105():159-169. PubMed ID: 31972367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds.
    Shao C; Chang H; Wang M; Xu F; Yang J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28305-28318. PubMed ID: 28771308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Aldehyde-Functionalized Crosslinkers on the Property of Chitosan Hydrogels.
    Yeh YY; Tsai YT; Wu CY; Tu LH; Bai MY; Yeh YC
    Macromol Biosci; 2022 May; 22(5):e2100477. PubMed ID: 35103401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties.
    Zou W; Chen Y; Zhang X; Li J; Sun L; Gui Z; Du B; Chen S
    Carbohydr Polym; 2018 Dec; 202():246-257. PubMed ID: 30286998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypeptide-based self-healing hydrogels: Design and biomedical applications.
    Cai L; Liu S; Guo J; Jia YG
    Acta Biomater; 2020 Sep; 113():84-100. PubMed ID: 32634482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties.
    Liu X; Yang K; Chang M; Wang X; Ren J
    Carbohydr Polym; 2020 Jul; 240():116289. PubMed ID: 32475570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of triple-crosslinked gelatin/alginate hydrogels for controlled release applications.
    Shen KH; Chiu TH; Teng KC; Yu J; Yeh YC
    Int J Biol Macromol; 2023 Oct; 250():126133. PubMed ID: 37543263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels.
    Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Stretchable and Highly Resilient Polymer-Clay Nanocomposite Hydrogels with Low Hysteresis.
    Su X; Mahalingam S; Edirisinghe M; Chen B
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22223-22234. PubMed ID: 28609609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.