BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33301081)

  • 1. Glutathione and the intracellular labile heme pool.
    O'Keeffe R; Latunde-Dada GO; Chen YL; Kong XL; Cilibrizzi A; Hider RC
    Biometals; 2021 Apr; 34(2):221-228. PubMed ID: 33301081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron speciation in the cytosol: an overview.
    Hider RC; Kong X
    Dalton Trans; 2013 Mar; 42(9):3220-9. PubMed ID: 23232973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione: a key component of the cytoplasmic labile iron pool.
    Hider RC; Kong XL
    Biometals; 2011 Dec; 24(6):1179-87. PubMed ID: 21769609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemiluminescence and EPR studies on the excitation site of ferric-heme-oxo complexes of natural and model heme systems.
    Liu Y; Nohl H
    Photochem Photobiol; 1995 Sep; 62(3):433-8. PubMed ID: 8570702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labile Iron Pool of Isolated
    Brawley HN; Kreinbrink AC; Hierholzer JD; Vali SW; Lindahl PA
    J Am Chem Soc; 2023 Feb; 145(4):2104-2117. PubMed ID: 36661842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and redox behavior of iron oxophlorin and role of electron transfer in the heme degradation process.
    Gheidi M; Safari N; Zahedi M
    Inorg Chem; 2012 Dec; 51(23):12857-66. PubMed ID: 23145938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular iron trafficking: role of cytosolic ligands.
    Shvartsman M; Ioav Cabantchik Z
    Biometals; 2012 Aug; 25(4):711-23. PubMed ID: 22350471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS).
    Du Y; Liu G; Yan Y; Huang D; Luo W; Martinkova M; Man P; Shimizu T
    Biometals; 2013 Oct; 26(5):839-52. PubMed ID: 23736976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Chelatable iron pool": inositol 1,2,3-trisphosphate fulfils the conditions required to be a safe cellular iron ligand.
    Veiga N; Torres J; Mansell D; Freeman S; Domínguez S; Barker CJ; Díaz A; Kremer C
    J Biol Inorg Chem; 2009 Jan; 14(1):51-9. PubMed ID: 18762996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why is the oxidation state of iron crucial for the activity of heme-dependent aldoxime dehydratase? A QM/MM study.
    Liao RZ; Thiel W
    J Phys Chem B; 2012 Aug; 116(31):9396-408. PubMed ID: 22799447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arg97 at the heme-distal side of the isolated heme-bound PAS domain of a heme-based oxygen sensor from Escherichia coli (Ec DOS) plays critical roles in autoxidation and binding to gases, particularly O2.
    Ishitsuka Y; Araki Y; Tanaka A; Igarashi J; Ito O; Shimizu T
    Biochemistry; 2008 Aug; 47(34):8874-84. PubMed ID: 18672892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing.
    Barr I; Smith AT; Chen Y; Senturia R; Burstyn JN; Guo F
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):1919-24. PubMed ID: 22308374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of cytosolic liver protein facilitating heme transport into apocytochrome b5 from mitochondria. Evidence for identifying the heme transfer protein as belonging to a group of glutathione S-transferases.
    Senjo M; Ishibashi T; Imai Y
    J Biol Chem; 1985 Aug; 260(16):9191-6. PubMed ID: 3926764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes.
    Chiavarino B; Crestoni ME; Fornarini S; Rovira C
    Inorg Chem; 2008 Sep; 47(17):7792-801. PubMed ID: 18681420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome mining and functional genomics for siderophore production in Aspergillus niger.
    Franken AC; Lechner BE; Werner ER; Haas H; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ
    Brief Funct Genomics; 2014 Nov; 13(6):482-92. PubMed ID: 25062661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron chelators inhibit the heme-degradation reaction by HutZ from Vibrio cholerae.
    Dojun N; Sekine Y; Ishimori K; Uchida T
    Dalton Trans; 2017 Apr; 46(16):5147-5150. PubMed ID: 28352909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: examination of the intermediates involved in iron metabolism.
    Richardson DR; Ponka P; Vyoral D
    Blood; 1996 Apr; 87(8):3477-88. PubMed ID: 8605367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of Pseudomonas aeruginosa apobacterioferritin-associated ferredoxin to bacterioferritin B promotes heme mediation of electron delivery and mobilization of core mineral iron.
    Weeratunga SK; Gee CE; Lovell S; Zeng Y; Woodin CL; Rivera M
    Biochemistry; 2009 Aug; 48(31):7420-31. PubMed ID: 19575528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand binding to the Fe(III)-protoporphyrin IX complex of phosphodiesterase from Escherichia coli (Ec DOS) markedly enhances catalysis of cyclic di-GMP: roles of Met95, Arg97, and Phe113 of the putative heme distal side in catalytic regulation and ligand binding.
    Tanaka A; Shimizu T
    Biochemistry; 2008 Dec; 47(50):13438-46. PubMed ID: 19053256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
    Haynes RK; Cheu KW; N'Da D; Coghi P; Monti D
    Infect Disord Drug Targets; 2013 Aug; 13(4):217-77. PubMed ID: 24304352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.