BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33301096)

  • 21. Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers.
    Yan G; Romero-Severson J; Walton M; Chadee DD; Severson DW
    Mol Ecol; 1999 Jun; 8(6):951-63. PubMed ID: 10434416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Customisation of AFLP analysis for cassava varietal identification.
    Wong HL; Yeoh HH; Lim SH
    Phytochemistry; 1999 Mar; 50(6):919-24. PubMed ID: 10385991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A format for databasing and comparison of AFLP fingerprint profiles.
    Hong Y; Chuah A
    BMC Bioinformatics; 2003 Feb; 4():7. PubMed ID: 12600280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes.
    Alonso S; Suzuki K; Yamamoto F; Perucho M
    Methods Mol Biol; 2018; 1766():137-156. PubMed ID: 29605851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in molecular marker techniques and their applications in plant sciences.
    Agarwal M; Shrivastava N; Padh H
    Plant Cell Rep; 2008 Apr; 27(4):617-31. PubMed ID: 18246355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [DNA polymorphism detection of Papaver somniferum L using fluorescent amplified fragment length polymorphism].
    Lu F; Cheng BW; Li H; Hong JJ; Sun HY; Zhao WS; Yang HM; Li J; Zhao YR
    Fa Yi Xue Za Zhi; 2008 Aug; 24(4):262-4, 267. PubMed ID: 18817035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid genomic and transcriptomic alterations induced by wide hybridization: Chrysanthemum nankingense × Tanacetum vulgare and C. crassum × Crossostephium chinense (Asteraceae).
    Wang H; Jiang J; Chen S; Fang W; Guan Z; Liao Y; Chen F
    BMC Genomics; 2013 Dec; 14():902. PubMed ID: 24350608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amplified fragment length polymorphism (AFLP) analysis is useful for distinguishing Leishmania species of visceral and cutaneous forms.
    Kumar A; Boggula VR; Misra P; Sundar S; Shasany AK; Dube A
    Acta Trop; 2010 Feb; 113(2):202-6. PubMed ID: 19854144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. optiFLP: software for automated optimization of amplified fragment length polymorphism scoring parameters.
    Arthofer W; Schlick-Steiner BC; Steiner FM
    Mol Ecol Resour; 2011 Nov; 11(6):1113-8. PubMed ID: 21707959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AFLP-based transcript profiling.
    Vos P; Stanssens P
    Curr Protoc Mol Biol; 2002 Feb; Chapter 25():Unit 25B.5. PubMed ID: 18265312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ALIS-FLP: amplified ligation selected fragment-length polymorphism method for microbial genotyping.
    Brillowska-Dabrowska A; Wianecka M; Dabrowski S; Mladenovska Z; Kur J; Ahring BK
    Scand J Clin Lab Invest; 2008; 68(8):720-30. PubMed ID: 18609079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework.
    Kirschner P; Arthofer W; Pfeifenberger S; Záveská E; Schönswetter P; ; Steiner FM; Schlick-Steiner BC
    Sci Rep; 2021 Feb; 11(1):3978. PubMed ID: 33597550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus.
    Lazzi C; Bove CG; Sgarbi E; Gatti M; La Gioia F; Torriani S; Neviani E
    J Microbiol Methods; 2009 Oct; 79(1):48-54. PubMed ID: 19647766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers.
    Al-Khalifah NS; Shanavaskhan AE
    Methods Mol Biol; 2017; 1638():185-196. PubMed ID: 28755224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [AFLP analysis of genetic diversity of Prunella].
    Shen Y; Sun Y; Shen X; Jiang J; Wang Z; Yu X
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(3):260-3. PubMed ID: 19445143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Almost forgotten or latest practice? AFLP applications, analyses and advances.
    Meudt HM; Clarke AC
    Trends Plant Sci; 2007 Mar; 12(3):106-17. PubMed ID: 17303467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AFLP-AFLP in silico-NGS approach reveals polymorphisms in repetitive elements in the malignant genome.
    Koblihova J; Srutova K; Krutska M; Klamova H; Machova Polakova K
    PLoS One; 2018; 13(11):e0206620. PubMed ID: 30408048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild-growing species.
    Alonso C; Pérez R; Bazaga P; Medrano M; Herrera CM
    Mol Ecol Resour; 2016 Jan; 16(1):80-90. PubMed ID: 25944158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Phoenix dactylifera L. varieties based on amplified fragment length polymorphism (AFLP) markers.
    Diaz S; Pire C; Ferrer J; Bonete MJ
    Cell Mol Biol Lett; 2003; 8(4):891-9. PubMed ID: 14668912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cost-effective fluorescent amplified fragment length polymorphism (AFLP) analyses using a three primer system.
    Stölting KN; Clarke AC; Meudt HM; Blankenhorn WU; Wilson AB
    Mol Ecol Resour; 2011 May; 11(3):494-502. PubMed ID: 21481207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.