These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33301096)

  • 61. In silico fingerprinting (ISIF): a user-friendly in silico AFLP program.
    Paris M; Després L
    Methods Mol Biol; 2012; 888():55-64. PubMed ID: 22665275
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modified AFLP technique for rapid genetic characterization in plants.
    Ranamukhaarachchi DG; Kane ME; Guy CL; Li QB
    Biotechniques; 2000 Oct; 29(4):858-9, 862-6. PubMed ID: 11056817
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multilocus profiling with AFLP, ISSR, and SAMPL.
    Goulao LF; Oliveira CM
    Methods Mol Biol; 2014; 1115():211-31. PubMed ID: 24415477
    [TBL] [Abstract][Full Text] [Related]  

  • 64. AFLP fingerprinting for analysis of yeast genetic variation.
    de Barros Lopes M; Rainieri S; Henschke PA; Langridge P
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():915-24. PubMed ID: 10319518
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion.
    O'Hanlon PC; Peakall R; Briese DT
    Mol Ecol; 1999 Aug; 8(8):1239-46. PubMed ID: 10447865
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Combined use of Amplified Fragment Length Polymorphism and IS6110-RFLP in fingerprinting clinical isolates of Mycobacterium tuberculosis from Kerala, South India.
    Krishnan MY; Radhakrishnan I; Joseph BV; Madhavi Latha GK; Ajay Kumar R; Mundayoor S
    BMC Infect Dis; 2007 Jul; 7():86. PubMed ID: 17662148
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of amplified fragment length polymorphism analysis for inter- and intraspecific differentiation of Mycobacterium bovis, M. tuberculosis, and M. ulcerans.
    Huys G; Rigouts L; Chemlal K; Portaels F; Swings J
    J Clin Microbiol; 2000 Oct; 38(10):3675-80. PubMed ID: 11015382
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Two methods to easily obtain nucleotide sequences from AFLP loci of interest.
    Paris M; Meyer CL; Blassiau C; Coissac E; Taberlet P; Després L
    Methods Mol Biol; 2012; 888():91-108. PubMed ID: 22665277
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Establishment and application of AFLP fingerprinting system in Atractylodes macrocephala germplasm].
    Wang ZA; Xu X; Shen XX; Chen BL; Shou HX
    Zhong Yao Cai; 2008 Apr; 31(4):483-7. PubMed ID: 18661815
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora.
    Jiang RH; Weide R; van de Vondervoort PJ; Govers F
    Genome Res; 2006 Jul; 16(7):827-40. PubMed ID: 16818726
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Randomly Amplified DNA Fingerprinting: A Culmination of DNA Marker Technologies Based on Arbitrarily-Primed PCR Amplification.
    Waldron J; Peace CP; Searle IR; Furtado A; Wade N; Findlay I; Graham MW; Carroll BJ
    J Biomed Biotechnol; 2002; 2(3):141-150. PubMed ID: 12488579
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new high-throughput AFLP approach for identification of new genetic polymorphism in the genome of the clonal microorganism Mycobacterium tuberculosis.
    van den Braak N; Simons G; Gorkink R; Reijans M; Eadie K; Kremers K; van Soolingen D; Savelkoul P; Verbrugh H; van Belkum A
    J Microbiol Methods; 2004 Jan; 56(1):49-62. PubMed ID: 14706750
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria.
    Lin JJ; Kuo J; Ma J
    Nucleic Acids Res; 1996 Sep; 24(18):3649-50. PubMed ID: 8836198
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis.
    Jackson PJ; Hill KK; Laker MT; Ticknor LO; Keim P
    J Appl Microbiol; 1999 Aug; 87(2):263-9. PubMed ID: 10475963
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple.
    Xu M; Huaracha E; Korban SS
    Genome; 2001 Feb; 44(1):63-70. PubMed ID: 11269357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of simple and rapid PCR-fingerprinting methods for Vibrio cholerae on the basis of genetic diversity of the superintegron.
    Chowdhury N; Asakura M; Neogi SB; Hinenoya A; Haldar S; Ramamurthy T; Sarkar BL; Faruque SM; Yamasaki S
    J Appl Microbiol; 2010 Jul; 109(1):304-12. PubMed ID: 20070445
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Use of AFLP for the study of eukaryotic pathogens affecting humans.
    Restrepo CM; Llanes A; Lleonart R
    Infect Genet Evol; 2018 Sep; 63():360-369. PubMed ID: 28935612
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A mathematical method for determining genome divergence and species delineation using AFLP.
    Mougel C; Thioulouse J; Perrière G; Nesme X
    Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):573-586. PubMed ID: 11931171
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [AFLP marking of the genotypes of leek (Allium porrum) varieties].
    Filiushin MA; Kholda OA; Kochieva EZ; Ryzhova NN
    Genetika; 2011 Apr; 47(4):560-5. PubMed ID: 21675247
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Eukaryotic transcriptomics in silico: optimizing cDNA-AFLP efficiency.
    Stölting KN; Gort G; Wüst C; Wilson AB
    BMC Genomics; 2009 Nov; 10():565. PubMed ID: 19948029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.