These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33301099)

  • 1. Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity.
    Kalendar R; Muterko A; Boronnikova S
    Methods Mol Biol; 2021; 2222():263-286. PubMed ID: 33301099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting.
    Kalendar R; Schulman AH
    Nat Protoc; 2006; 1(5):2478-84. PubMed ID: 17406494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon-based tagging: IRAP, REMAP, and iPBS.
    Kalendar R; Schulman AH
    Methods Mol Biol; 2014; 1115():233-55. PubMed ID: 24415478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.
    Sharma V; Nandineni MR
    Mol Phylogenet Evol; 2014 Apr; 73():10-7. PubMed ID: 24440815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation.
    Kalendar R; Antonius K; Smýkal P; Schulman AH
    Theor Appl Genet; 2010 Nov; 121(8):1419-30. PubMed ID: 20623102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposon-Based Tagging In Silico Using FastPCR Software.
    Kalendar R; Kospanova D; Schulman AH
    Methods Mol Biol; 2021; 2250():245-256. PubMed ID: 33900610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of retrotransposon-based markers IRAP and REMAP for cassava (Manihot esculenta).
    Kuhn BC; Mangolin CA; Souto ER; Vicient CM; Machado MF
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of retrotransposon-derived genetic markers to analyse genomic variability in plants.
    Kalendar R; Amenov A; Daniyarov A
    Funct Plant Biol; 2018 Jan; 46(1):15-29. PubMed ID: 30939255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers.
    Coutinho JP; Carvalho A; Martín A; Lima-Brito J
    Mol Biol Rep; 2018 Apr; 45(2):133-142. PubMed ID: 29349607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrotransposon-based molecular markers for assessment of genomic diversity.
    Alzohairy AM; Gyulai GB; Ramadan MF; Edris S; Sabir JSM; Jansen RK; Eissa HF; Bahieldin A
    Funct Plant Biol; 2014 Aug; 41(8):781-789. PubMed ID: 32481032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques.
    Leigh F; Kalendar R; Lea V; Lee D; Donini P; Schulman AH
    Mol Genet Genomics; 2003 Jul; 269(4):464-74. PubMed ID: 12768410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification.
    Smýkal P
    J Appl Genet; 2006; 47(3):221-30. PubMed ID: 16877800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports.
    Antonius-Klemola K; Kalendar R; Schulman AH
    Theor Appl Genet; 2006 Apr; 112(6):999-1008. PubMed ID: 16404583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IRAP and REMAP assessments of genetic similarity in rice.
    Branco CJ; Vieira EA; Malone G; Kopp MM; Malone E; Bernardes A; Mistura CC; Carvalho FI; Oliveira CA
    J Appl Genet; 2007; 48(2):107-13. PubMed ID: 17495343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers.
    Nasri S; Abdollahi Mandoulakani B; Darvishzadeh R; Bernousi I
    Biochem Genet; 2013 Dec; 51(11-12):927-43. PubMed ID: 23839088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Genetic Variations and Genomic Instabilities in Magnaporthe oryzae.
    Chadha S
    Methods Mol Biol; 2021; 2356():211-224. PubMed ID: 34236689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of LTR retrotransposons as molecular markers in plants.
    Schulman AH; Flavell AJ; Paux E; Ellis TH
    Methods Mol Biol; 2012; 859():115-53. PubMed ID: 22367869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species.
    Sorkheh K; Dehkordi MK; Ercisli S; Hegedus A; Halász J
    Sci Rep; 2017 Jul; 7(1):5966. PubMed ID: 28729554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea).
    Chadha S; Gopalakrishna T
    Genome; 2005 Oct; 48(5):943-5. PubMed ID: 16391701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terminal repeat retrotransposons as DNA markers in fungi.
    Santana MF; Batista AD; Ribeiro LE; de Araújo EF; de Queiroz MV
    J Basic Microbiol; 2013 Oct; 53(10):823-7. PubMed ID: 23440766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.