These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33301297)

  • 21. Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules.
    Kellermayer MS; Karsai A; Kengyel A; Nagy A; Bianco P; Huber T; Kulcsár A; Niedetzky C; Proksch R; Grama L
    Biophys J; 2006 Oct; 91(7):2665-77. PubMed ID: 16861276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Launching Phonon Polaritons by Natural Boron Nitride Wrinkles with Modifiable Dispersion by Dielectric Environments.
    Duan J; Chen R; Li J; Jin K; Sun Z; Chen J
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silanization of Sapphire Surfaces for Optical Sensing Applications.
    Sandner T; Steinbach AM; Knittel P; Diemant T; Behm RJ; Strehle S; Kranz C; Mizaikoff B
    ACS Sens; 2017 Apr; 2(4):522-530. PubMed ID: 28723185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peak Force Infrared-Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Zeng G; Otzen DE; Yan Y; Xu XG
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16083-16090. PubMed ID: 32463936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep image restoration for infrared photothermal heterodyne imaging.
    Zhang S; Kniazev K; Pavlovetc IM; Zhang S; Stevenson RL; Kuno M
    J Chem Phys; 2021 Dec; 155(21):214202. PubMed ID: 34879676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photovoltaic and photothermal effects induced by visible laser radiation in atomic force microscopy probes.
    Pichois MD; Henning X; Hurier MA; Vomir M; Barsella A; Mager L; Donnio B; Gallani JL; Rastei MV
    Ultramicroscopy; 2022 Nov; 241():113601. PubMed ID: 36027687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Total internal reflection fluorescence microscopy for high-resolution imaging of cell-surface events.
    Jaiswal JK; Simon SM
    Curr Protoc Cell Biol; 2003 Nov; Chapter 4():Unit 4.12. PubMed ID: 18228434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined in situ atomic force microscopy-infrared-attenuated total reflection spectroscopy.
    Brucherseifer M; Kranz C; Mizaikoff B
    Anal Chem; 2007 Nov; 79(22):8803-6. PubMed ID: 17939644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.
    Hermann RJ; Gordon MJ
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():365-387. PubMed ID: 29596000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale chemical imaging by photoinduced force microscopy.
    Nowak D; Morrison W; Wickramasinghe HK; Jahng J; Potma E; Wan L; Ruiz R; Albrecht TR; Schmidt K; Frommer J; Sanders DP; Park S
    Sci Adv; 2016 Mar; 2(3):e1501571. PubMed ID: 27051870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids.
    Liang L; Zuo YF; Wu W; Zhu XQ; Yang Y
    Lab Chip; 2016 Aug; 16(16):3007-14. PubMed ID: 26984126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Chemical Features of the Natural Fibrous Material Wood.
    Gusenbauer C; Jakob DS; Xu XG; Vezenov DV; Cabane É; Konnerth J
    Biomacromolecules; 2020 Oct; 21(10):4244-4252. PubMed ID: 32852940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Note: An easy way to enable total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) by combining commercial devices for FCS and TIR microscopy.
    Yordanov S; Best A; Weisshart K; Koynov K
    Rev Sci Instrum; 2011 Mar; 82(3):036105. PubMed ID: 21456807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.
    Dazzi A; Prater CB
    Chem Rev; 2017 Apr; 117(7):5146-5173. PubMed ID: 27958707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Total internal reflection spectroscopy for studying soft matter.
    Woods DA; Bain CD
    Soft Matter; 2014 Feb; 10(8):1071-96. PubMed ID: 24651911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
    Schulz F; Ritala J; Krejčí O; Seitsonen AP; Foster AS; Liljeroth P
    ACS Nano; 2018 Jun; 12(6):5274-5283. PubMed ID: 29800512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.
    Zhang D; Li C; Zhang C; Slipchenko MN; Eakins G; Cheng JX
    Sci Adv; 2016 Sep; 2(9):e1600521. PubMed ID: 27704043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomaterial and cellular properties as examined through atomic force microscopy, fluorescence optical microscopies and spectroscopic techniques.
    Kainz B; Oprzeska-Zingrebe EA; Herrera JL
    Biotechnol J; 2014 Jan; 9(1):51-60. PubMed ID: 24265117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.