These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 33301543)

  • 1. The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans.
    Pancer K; Milewska A; Owczarek K; Dabrowska A; Kowalski M; Łabaj PP; Branicki W; Sanak M; Pyrc K
    PLoS Pathog; 2020 Dec; 16(12):e1008959. PubMed ID: 33301543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Notable sequence homology of the ORF10 protein introspects the architecture of SARS-CoV-2.
    Hassan SS; Attrish D; Ghosh S; Choudhury PP; Uversky VN; Aljabali AAA; Lundstrom K; Uhal BD; Rezaei N; Seyran M; Pizzol D; Adadi P; Soares A; Abd El-Aziz TM; Kandimalla R; Tambuwala MM; Azad GK; Sherchan SP; Baetas-da-Cruz W; Lal A; Palù G; Takayama K; Serrano-Aroca Á; Barh D; Brufsky AM
    Int J Biol Macromol; 2021 Jun; 181():801-809. PubMed ID: 33862077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy.
    Li X; Hou P; Ma W; Wang X; Wang H; Yu Z; Chang H; Wang T; Jin S; Wang X; Wang W; Zhao Y; Zhao Y; Xu C; Ma X; Gao Y; He H
    Cell Mol Immunol; 2022 Jan; 19(1):67-78. PubMed ID: 34845370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function.
    Hassan SS; Lundstrom K; Serrano-Aroca Á; Adadi P; Aljabali AAA; Redwan EM; Lal A; Kandimalla R; El-Aziz TMA; Pal Choudhury P; Azad GK; Sherchan SP; Chauhan G; Tambuwala M; Takayama K; Barh D; Palu G; Basu P; Uversky VN
    Int J Biol Macromol; 2022 Jan; 194():128-143. PubMed ID: 34863825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ORF10-Cullin-2-ZYG11B complex is not required for SARS-CoV-2 infection.
    Mena EL; Donahue CJ; Vaites LP; Li J; Rona G; O'Leary C; Lignitto L; Miwatani-Minter B; Paulo JA; Dhabaria A; Ueberheide B; Gygi SP; Pagano M; Harper JW; Davey RA; Elledge SJ
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33827988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The coding capacity of SARS-CoV-2.
    Finkel Y; Mizrahi O; Nachshon A; Weingarten-Gabbay S; Morgenstern D; Yahalom-Ronen Y; Tamir H; Achdout H; Stein D; Israeli O; Beth-Din A; Melamed S; Weiss S; Israely T; Paran N; Schwartz M; Stern-Ginossar N
    Nature; 2021 Jan; 589(7840):125-130. PubMed ID: 32906143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of SARS-CoV-2 accessory proteins in immunopathogenesis.
    Ito H; Tamura T; Wang L; Mori K; Tsuda M; Suzuki R; Suzuki S; Yoshimatsu K; Tanaka S; Fukuhara T
    Microbiol Immunol; 2024 Jul; 68(7):237-247. PubMed ID: 38837257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pandemic analysis of infection and death correlated with genomic open reading frame 10 mutation in severe acute respiratory syndrome coronavirus 2 victims.
    Yang DM; Lin FC; Tsai PH; Chien Y; Wang ML; Yang YP; Chang TJ
    J Chin Med Assoc; 2021 May; 84(5):478-484. PubMed ID: 33883466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10.
    López-Ayllón BD; Marin S; Fernández MF; García-García T; Fernández-Rodríguez R; de Lucas-Rius A; Redondo N; Mendoza-García L; Foguet C; Grigas J; Calvet A; Villalba JM; Gómez MJR; Megías D; Mandracchia B; Luque D; Lozano JJ; Calvo C; Herrán UM; Thomson TM; Garrido JJ; Cascante M; Montoya M
    J Med Virol; 2024 Jul; 96(7):e29752. PubMed ID: 38949191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consecutive deletions in a unique Uruguayan SARS-CoV-2 lineage evidence the genetic variability potential of accessory genes.
    Panzera Y; Calleros L; Goñi N; Marandino A; Techera C; Grecco S; Ramos N; Frabasile S; Tomás G; Condon E; Cortinas MN; Ramas V; Coppola L; Sorhouet C; Mogdasy C; Chiparelli H; Arbiza J; Delfraro A; Pérez R
    PLoS One; 2022; 17(2):e0263563. PubMed ID: 35176063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses.
    Cagliani R; Forni D; Clerici M; Sironi M
    Infect Genet Evol; 2020 Sep; 83():104353. PubMed ID: 32387562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection.
    Chang JJ; Rawlinson D; Pitt ME; Taiaroa G; Gleeson J; Zhou C; Mordant FL; De Paoli-Iseppi R; Caly L; Purcell DFJ; Stinear TP; Londrigan SL; Clark MB; Williamson DA; Subbarao K; Coin LJM
    Cell Rep; 2021 May; 35(6):109108. PubMed ID: 33961822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic aspects of ORF1ab and N RNA cycle threshold values among COVID-19 patients in China.
    Bhargava A
    Infect Genet Evol; 2021 Jan; 87():104657. PubMed ID: 33276148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of SARS-CoV-2 strains carrying a nucleotide mutation, leading to a stop codon in the ORF 6 protein.
    Delbue S; D'Alessandro S; Signorini L; Dolci M; Pariani E; Bianchi M; Fattori S; Modenese A; Galli C; Eberini I; Ferrante P
    Emerg Microbes Infect; 2021 Dec; 10(1):252-255. PubMed ID: 33525998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic surveillance of SARS-CoV-2 in Thailand reveals mixed imported populations, a local lineage expansion and a virus with truncated ORF7a.
    Joonlasak K; Batty EM; Kochakarn T; Panthan B; Kümpornsin K; Jiaranai P; Wangwiwatsin A; Huang A; Kotanan N; Jaru-Ampornpan P; Manasatienkij W; Watthanachockchai T; Rakmanee K; Jones AR; Fernandez S; Sensorn I; Sungkanuparph S; Pasomsub E; Klungthong C; Chookajorn T; Chantratita W
    Virus Res; 2021 Jan; 292():198233. PubMed ID: 33227343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting SARS CoV2 (Indian isolate) genome with miRNA: An in silico study.
    Devi A; Chaitanya NSN
    IUBMB Life; 2020 Nov; 72(11):2454-2468. PubMed ID: 32909697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters.
    Moriuchi H; Moriuchi M; Straus SE; Cohen JI
    J Virol; 1993 May; 67(5):2739-46. PubMed ID: 8386275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional diversity and evolutionary pattern of coronavirus accessory proteins.
    Shang J; Han N; Chen Z; Peng Y; Li L; Zhou H; Ji C; Meng J; Jiang T; Wu A
    Brief Bioinform; 2021 Mar; 22(2):1267-1278. PubMed ID: 33126244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome.
    Kim D; Kim S; Park J; Chang HR; Chang J; Ahn J; Park H; Park J; Son N; Kang G; Kim J; Kim K; Park MS; Kim YK; Baek D
    Nat Commun; 2021 Aug; 12(1):5120. PubMed ID: 34433827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Varicella-zoster virus open reading frame 10 is a virulence determinant in skin cells but not in T cells in vivo.
    Che X; Zerboni L; Sommer MH; Arvin AM
    J Virol; 2006 Apr; 80(7):3238-48. PubMed ID: 16537591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.