These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33301827)

  • 1. Evoked and induced power oscillations linked to audiovisual integration of affect.
    Gao C; Xie W; Green JJ; Wedell DH; Jia X; Guo C; Shinkareva SV
    Biol Psychol; 2021 Jan; 158():108006. PubMed ID: 33301827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech-specific audiovisual integration modulates induced theta-band oscillations.
    Lindborg A; Baart M; Stekelenburg JJ; Vroomen J; Andersen TS
    PLoS One; 2019; 14(7):e0219744. PubMed ID: 31310616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic Modulation of Entrained Auditory Oscillations by Visual Inputs.
    Simon DM; Wallace MT
    Brain Topogr; 2017 Sep; 30(5):565-578. PubMed ID: 28341920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The level of audiovisual print-speech integration deficits in dyslexia.
    Kronschnabel J; Brem S; Maurer U; Brandeis D
    Neuropsychologia; 2014 Sep; 62():245-61. PubMed ID: 25084224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sound and the fury: Late positive potential is sensitive to sound affect.
    Brown DR; Cavanagh JF
    Psychophysiology; 2017 Dec; 54(12):1812-1825. PubMed ID: 28726287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal dynamics of audiovisual affective processing.
    Gao C; Wedell DH; Green JJ; Jia X; Mao X; Guo C; Shinkareva SV
    Biol Psychol; 2018 Nov; 139():59-72. PubMed ID: 30291876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.
    Roa Romero Y; Senkowski D; Keil J
    J Neurophysiol; 2015 Apr; 113(7):2342-50. PubMed ID: 25568160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human amygdala response to unisensory and multisensory emotion input: No evidence for superadditivity from intracranial recordings.
    Domínguez-Borràs J; Guex R; Méndez-Bértolo C; Legendre G; Spinelli L; Moratti S; Frühholz S; Mégevand P; Arnal L; Strange B; Seeck M; Vuilleumier P
    Neuropsychologia; 2019 Aug; 131():9-24. PubMed ID: 31158367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.
    Shahin AJ; Backer KC; Rosenblum LD; Kerlin JR
    J Neurosci; 2018 Feb; 38(7):1835-1849. PubMed ID: 29263241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating non-affective cross-modal congruence effects on emotion perception.
    Gao C; Wedell DH; Shinkareva SV
    Cogn Emot; 2021 Dec; 35(8):1634-1651. PubMed ID: 34486494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of emotion in dynamic audiovisual integration of faces and voices.
    Kokinous J; Kotz SA; Tavano A; Schröger E
    Soc Cogn Affect Neurosci; 2015 May; 10(5):713-20. PubMed ID: 25147273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception.
    Li Y; Long J; Huang B; Yu T; Wu W; Liu Y; Liang C; Sun P
    Cereb Cortex; 2015 Feb; 25(2):384-95. PubMed ID: 23978654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation.
    Mercier MR; Molholm S; Fiebelkorn IC; Butler JS; Schwartz TH; Foxe JJ
    J Neurosci; 2015 Jun; 35(22):8546-57. PubMed ID: 26041921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling audiovisual integration of affect from videos and music.
    Gao C; Wedell DH; Kim J; Weber CE; Shinkareva SV
    Cogn Emot; 2018 May; 32(3):516-529. PubMed ID: 28463060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related oscillatory theta modulation of multisensory integration in frontocentral regions.
    Yan T; Bi X; Zhang M; Wang W; Yao Z; Yang W; Wu J
    Neuroreport; 2016 Aug; 27(11):796-801. PubMed ID: 27272690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal (non)binding of audiovisual rhythms in sensorimotor synchronisation.
    Lapenta OM; Keller PE; Nozaradan S; Varlet M
    Exp Brain Res; 2023 Mar; 241(3):875-887. PubMed ID: 36788141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting pitch encoding with audiovisual interactions in congenital amusia.
    Albouy P; Lévêque Y; Hyde KL; Bouchet P; Tillmann B; Caclin A
    Neuropsychologia; 2015 Jan; 67():111-20. PubMed ID: 25499145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion.
    Bidelman GM
    Exp Brain Res; 2016 Oct; 234(10):3037-47. PubMed ID: 27334887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.
    Li Q; Yu H; Wu Y; Gao N
    Neurosci Lett; 2016 Aug; 629():149-154. PubMed ID: 27392755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.