These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33301969)

  • 1. A novel process for comprehensive resource utilization of hazardous chromium sludge: Progressive recovery of Si, V, Fe and Cr.
    Guo Y; Li HY; Shen S; Cheng J; Diao J; Xie B
    J Hazard Mater; 2021 Mar; 405():124669. PubMed ID: 33301969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microemulsion extraction: An efficient way for simultaneous detoxification and resource recovery of hazardous wastewater containing V(V) and Cr(VI).
    Guo Y; Li HY; Yuan YH; Huang J; Diao J; Xie B
    J Hazard Mater; 2020 Mar; 386():121948. PubMed ID: 31884357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel anion exchange method based on in situ selectively reductive desorption of Cr(VI) for its separation from V(V): Toward the comprehensive use of hazardous wastewater.
    Li HY; Yang Y; Zhang M; Wei W; Xie B
    J Hazard Mater; 2019 Apr; 368():670-679. PubMed ID: 30731367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of chromium-containing solid wastes into value-added products through a plasma-assisted aluminothermic process.
    Rajalingam S; Kandasamy R; Pudugramam Vishwanathan A
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63682-63689. PubMed ID: 33515410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sufficient extraction of Cr from chromium ore processing residue (COPR) by selective Mg removal.
    Zhang J; Xie W; Chu S; Liu Z; Wu Z; Lan Y; Galvita VV; Zhang L; Su X
    J Hazard Mater; 2022 Oct; 440():129754. PubMed ID: 35985215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings.
    Wen J; Jiang T; Wang J; Gao H; Lu L
    J Hazard Mater; 2019 Oct; 378():120733. PubMed ID: 31202069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource utilization of hazardous Cr/Fe-rich sludge: synthesis of erdite flocculant to treat real electroplating wastewater.
    Yu C; Ying Z; Yanwen L; Suiyi Z; Dongxu L; Tong S; Xinfeng X; Xianze W
    J Environ Health Sci Eng; 2022 Jun; 20(1):509-519. PubMed ID: 35669836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge.
    Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W
    Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc recovery and waste sludge minimization from chromium passivation baths.
    Diban N; Mediavilla R; Urtiaga A; Ortiz I
    J Hazard Mater; 2011 Aug; 192(2):801-7. PubMed ID: 21704452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of tannery sludge by co-treatment with aluminum anodizing sludge and phytotoxicity of end-products.
    Pantazopoulou E; Zebiliadou O; Mitrakas M; Zouboulis A
    Waste Manag; 2017 Mar; 61():327-336. PubMed ID: 28094157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Alumina Nanorods from Chromium-Containing Alumina Sludge.
    Zhang X; Deng B; Sun T; Li W; Duan CP
    Nanoscale Res Lett; 2017 Dec; 12(1):392. PubMed ID: 28599508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid-extraction oxidation process to recover and reuse copper chromium and arsenic from industrial wood preservative sludge.
    Kazi FK; Cooper PA
    Waste Manag; 2002; 22(3):293-301. PubMed ID: 11952176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of Fe and Al from red mud by a novel fractional precipitation process.
    Yu F; Huangfu L; Wang C; Li C; Yu J; Li W; Gao S
    Environ Sci Pollut Res Int; 2020 May; 27(13):14642-14653. PubMed ID: 32052331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere.
    Yang Y; Ma H; Chen X; Zhu C; Li X
    Environ Res; 2020 Apr; 183():109159. PubMed ID: 32028182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of High-Purity Strontianite and Hematite from Strontium-Bearing Sludge.
    Bian R; Su T; Chen Y; Qu Z; Zhu S; Tian X; Huo Y
    ACS Omega; 2020 Jun; 5(23):14078-14085. PubMed ID: 32566874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater.
    Fang D; Liao X; Zhang X; Teng A; Xue X
    J Hazard Mater; 2018 Jan; 342():436-445. PubMed ID: 28858709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel reductive alkali roasting of chromite ores for carcinogen-free Cr
    Escudero-Castejón L; Taylor J; Sánchez-Segado S; Jha A
    J Hazard Mater; 2021 Feb; 403():123589. PubMed ID: 32795821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders.
    Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X
    Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv X; Bai C
    J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.