These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 33301970)

  • 1. Quantification of low molecular weight oxidation byproducts produced from real filtered water after catalytic ozonation with different pathways.
    Wei L; Wen K; Lu J; Ma J
    J Hazard Mater; 2021 Mar; 405():124674. PubMed ID: 33301970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of organic acids adsorption on catalytic ozonation with metal oxides].
    Zhang T; Ma J; Chen ZL; Qi H; Guo J
    Huan Jing Ke Xue; 2005 Sep; 26(5):85-8. PubMed ID: 16366475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Low molecular weight oxidation by-products produced during catalytic ozonation with ferric hydroxide of NOM fractions isolated from filtrated water].
    Lu JF; Qiu J; Ma J; Zhang T; Chen ZL; Wang H
    Huan Jing Ke Xue; 2009 Mar; 30(3):765-70. PubMed ID: 19432325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Control of THMs formation potential of filtered surface water with catalytic ozonation by ferric hydroxide].
    Lu JF; Zhang T; Ma J; Chen ZL; Jiang J
    Huan Jing Ke Xue; 2006 May; 27(5):935-40. PubMed ID: 16850836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced catalytic ozonation by highly dispersed CeO
    Wang J; Quan X; Chen S; Yu H; Liu G
    J Hazard Mater; 2019 Apr; 368():621-629. PubMed ID: 30721857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of plasmon-enhanced catalytic ozonation for the abatement of micropollutants in environmental matrices.
    Yang W; Wu T
    Water Res; 2022 Mar; 211():118072. PubMed ID: 35090740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Impact of catalytic ozonation with ferric hydroxide on HAAs formation potential of a filtered surface water].
    Zhang T; Lu JF; Ma J; Chen ZL; Shen SF; Wang Q
    Huan Jing Ke Xue; 2006 Aug; 27(8):1580-5. PubMed ID: 17111615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation.
    Zhang T; Lu J; Ma J; Qiang Z
    Chemosphere; 2008 Mar; 71(5):911-21. PubMed ID: 18190948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced treatment of municipal secondary effluent by catalytic ozonation using Fe
    Bai Z; Wang J; Yang Q
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9337-9349. PubMed ID: 28233203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of catalytic ozonation for elimination of methyldopa with Fe
    Xiong P; Fan S; Song J; Dai Q
    Water Environ Res; 2021 Dec; 93(12):2903-2913. PubMed ID: 34363642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water.
    Zhang T; Lu J; Ma J; Qiang Z
    Water Res; 2008 Mar; 42(6-7):1563-70. PubMed ID: 18048076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on bromate formation of catalytic ozonation process].
    Wu L; Yang HW; Yang SX; Lü M; Cheng W
    Huan Jing Ke Xue; 2011 Aug; 32(8):2279-83. PubMed ID: 22619950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
    De Vera GA; Stalter D; Gernjak W; Weinberg HS; Keller J; Farré MJ
    Water Res; 2015 Dec; 87():49-58. PubMed ID: 26378731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into the catalytic ozonation process using iron oxide-impregnated activated carbon.
    Yuan Y; Xing G; Garg S; Ma J; Kong X; Dai P; Waite TD
    Water Res; 2020 Jun; 177():115785. PubMed ID: 32304906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches.
    Guo Y; Zhu S; Wang B; Huang J; Deng S; Yu G; Wang Y
    J Hazard Mater; 2019 Dec; 380():120888. PubMed ID: 31336267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pre-ozonation of DOM on micropollutant abatement by UV-based advanced oxidation processes.
    Sun B; Wang Y; Xiang Y; Shang C
    J Hazard Mater; 2020 Jun; 391():122201. PubMed ID: 32045804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.
    Gümüş D; Akbal F
    Chemosphere; 2017 May; 174():218-231. PubMed ID: 28171838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency and mechanism of atenolol decomposition in Co-FeOOH catalytic ozonation.
    Xu Z; Xie M; Ben Y; Shen J; Qi F; Chen Z
    J Hazard Mater; 2019 Mar; 365():146-154. PubMed ID: 30419461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective.
    Wang J; Chen H
    Sci Total Environ; 2020 Feb; 704():135249. PubMed ID: 31837842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NDMA formation from 4,4'-hexamethylenebis (HDMS) during ozonation: influencing factors and mechanisms.
    Shen L; Liao X; Qi H; Zhao L; Li F; Yuan B
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1584-1594. PubMed ID: 30443725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.