These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 33302008)
1. Psychrozymes as novel tools to biodegrade p-xylene and potential use for contaminated groundwater in the cold climate. Miri S; Davoodi SM; Brar SK; Rouissi T; Sheng Y; Martel R Bioresour Technol; 2021 Feb; 321():124464. PubMed ID: 33302008 [TBL] [Abstract][Full Text] [Related]
2. Biodegradation of p-xylene-a comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. Miri S; Rasooli A; Brar SK; Rouissi T; Martel R Environ Sci Pollut Res Int; 2022 Mar; 29(15):21465-21479. PubMed ID: 34762239 [TBL] [Abstract][Full Text] [Related]
3. Sustainable production and co-immobilization of cold-active enzymes from Pseudomonas sp. for BTEX biodegradation. Miri S; Perez JAE; Brar SK; Rouissi T; Martel R Environ Pollut; 2021 Sep; 285():117678. PubMed ID: 34380234 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of scale-up effect on cold-active enzyme production and biodegradation tests using pilot-scale bioreactors and a 3D soil tank. Miri S; Robert T; Davoodi SM; Brar SK; Martel R; Rouissi T; Lauzon JM J Hazard Mater; 2023 May; 450():131078. PubMed ID: 36848843 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. Miri S; Davoodi SM; Robert T; Brar SK; Martel R; Rouissi T J Hazard Mater; 2022 Feb; 423(Pt A):127099. PubMed ID: 34523486 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of three novel catechol 2,3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. Hassan HA; Aly AA Int J Biol Macromol; 2018 Jan; 106():1107-1114. PubMed ID: 28847603 [TBL] [Abstract][Full Text] [Related]
7. Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Wolicka D; Suszek A; Borkowski A; Bielecka A Bioresour Technol; 2009 Jul; 100(13):3221-7. PubMed ID: 19289274 [TBL] [Abstract][Full Text] [Related]
8. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Hallier-Soulier S; Ducrocq V; Truffaut N Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042 [TBL] [Abstract][Full Text] [Related]
9. BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1. Qu D; Zhao Y; Sun J; Ren H; Zhou R Can J Microbiol; 2015 Sep; 61(9):691-9. PubMed ID: 26221863 [TBL] [Abstract][Full Text] [Related]
10. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Mesarch MB; Nakatsu CH; Nies L Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661 [TBL] [Abstract][Full Text] [Related]
11. Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. Kao CM; Chen CS; Tsa FY; Yang KH; Chien CC; Liang SH; Yang CA; Chen SC J Hazard Mater; 2010 Jun; 178(1-3):409-16. PubMed ID: 20185233 [TBL] [Abstract][Full Text] [Related]
12. In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs). Kunukcu YK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):839-45. PubMed ID: 17558763 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the effects of variable site temperatures and constant incubation temperatures on the biodegradation of petroleum hydrocarbons in pilot-scale experiments with field-aged contaminated soils from a cold regions site. Chang W; Whyte L; Ghoshal S Chemosphere; 2011 Feb; 82(6):872-8. PubMed ID: 21144548 [TBL] [Abstract][Full Text] [Related]
14. [Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance]. Wang SJ; Wang X; Lu GL; Wang QH; Li FS; Guo GL Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1082-8. PubMed ID: 21774336 [TBL] [Abstract][Full Text] [Related]
15. Sequential electron acceptor model for evaluation of in situ bioremediation of petroleum hydrocarbon contaminants in groundwater. Brauner JS; Widdowson MA Ann N Y Acad Sci; 1997 Nov; 829():263-79. PubMed ID: 9472325 [TBL] [Abstract][Full Text] [Related]
16. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses. Peter A; Steinbach A; Liedl R; Ptak T; Michaelis W; Teutsch G J Contam Hydrol; 2004 Jul; 71(1-4):127-54. PubMed ID: 15145565 [TBL] [Abstract][Full Text] [Related]
17. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. Richnow HH; Annweiler E; Michaelis W; Meckenstock RU J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203 [TBL] [Abstract][Full Text] [Related]
18. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor. Kermanshahi pour A; Karamanev D; Margaritis A Water Res; 2005 Sep; 39(15):3704-14. PubMed ID: 16095655 [TBL] [Abstract][Full Text] [Related]
19. Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation. Poi G; Shahsavari E; Aburto-Medina A; Mok PC; Ball AS J Environ Manage; 2018 May; 214():157-163. PubMed ID: 29524671 [TBL] [Abstract][Full Text] [Related]
20. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Cavalca L; Dell'Amico E; Andreoni V Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]