These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33302048)

  • 1. A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems.
    Fan J; De Coninck J; Wu H; Wang F
    J Colloid Interface Sci; 2021 Mar; 585():320-327. PubMed ID: 33302048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid.
    Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G
    J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic Origin of Capillary Force Balance at Contact Line.
    Fan J; De Coninck J; Wu H; Wang F
    Phys Rev Lett; 2020 Mar; 124(12):125502. PubMed ID: 32281863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G; Orme BV; Wells GG; Ledesma-Aguilar R
    Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Young's Equation for a Two-Liquid System on the Nanometer Scale.
    Fernandez-Toledano JC; Blake TD; De Coninck J
    Langmuir; 2017 Mar; 33(11):2929-2938. PubMed ID: 28248509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the cohesion of fluids and their adhesion to solids: Young's equation at the atomic scale.
    Fernandez-Toledano JC; Blake TD; Lambert P; De Coninck J
    Adv Colloid Interface Sci; 2017 Jul; 245():102-107. PubMed ID: 28457500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the solid-fluid interfacial tensions depending on the substrate curvature: Young's equation holds for wetting around nanoscale cylinder.
    Watanabe K; Kusudo H; Bistafa C; Omori T; Yamaguchi Y
    J Chem Phys; 2022 Feb; 156(5):054701. PubMed ID: 35135251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new methodology for measuring solid/liquid interfacial energy.
    Sarkar S; Jafari Gukeh M; Roy T; Gaikwad H; Bellussi FM; Moitra S; Megaridis CM
    J Colloid Interface Sci; 2023 Mar; 633():800-807. PubMed ID: 36493744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets.
    Jabbarzadeh A
    J Colloid Interface Sci; 2024 Jul; 666():355-370. PubMed ID: 38603878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of non-reactive and reactive wetting of liquids on surfaces.
    Kumar G; Prabhu KN
    Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces.
    Lee E; Müller-Plathe F
    J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Liquid Young's Law on SLIPS: Liquid-Liquid Interfacial Tensions and Zisman Plots.
    McHale G; Afify N; Armstrong S; Wells GG; Ledesma-Aguilar R
    Langmuir; 2022 Aug; 38(32):10032-10042. PubMed ID: 35921631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring line tension: Thermodynamic integration during detachment of a molecular dynamics droplet.
    Shintaku M; Oga H; Kusudo H; Smith ER; Omori T; Yamaguchi Y
    J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting properties of molecularly rough surfaces.
    Svoboda M; Malijevský A; Lísal M
    J Chem Phys; 2015 Sep; 143(10):104701. PubMed ID: 26374050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Study of the Microscopic Mechanical Balance at the Three-Phase Contact Line of Interfacial Nanobubble.
    Jonosono Y; Tsuda SI; Tokumasu T; Nagashima H
    Langmuir; 2024 Apr; 40(16):8440-8449. PubMed ID: 38604804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.