BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33302499)

  • 1. Establishment of a
    Chang KW; Lin CE; Tu HF; Chung HY; Chen YF; Lin SC
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33302499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing of mouse oral carcinoma cell lines derived from transgenic mice and their use as syngeneic tumorigenesis models.
    Chen YF; Liu CJ; Lin LH; Chou CH; Yeh LY; Lin SC; Chang KW
    BMC Cancer; 2019 Mar; 19(1):281. PubMed ID: 30922255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of syngeneic murine model for oral cancer therapy.
    Chen YF; Chang KW; Yang IT; Tu HF; Lin SC
    Oral Oncol; 2019 Aug; 95():194-201. PubMed ID: 31345390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long non-coding RNA highly up-regulated in liver cancer promotes epithelial-to-mesenchymal transition process in oral squamous cell carcinoma.
    Su W; Tang J; Wang Y; Sun S; Shen Y; Yang H
    J Cell Mol Med; 2019 Apr; 23(4):2645-2655. PubMed ID: 30677230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The serum biomarker chemerin promotes tumorigenesis and metastasis in oral squamous cell carcinoma.
    Lu Z; Liang J; He Q; Wan Q; Hou J; Lian K; Wang A
    Clin Sci (Lond); 2019 Mar; 133(5):681-695. PubMed ID: 30804218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma.
    Lee JC; Chung LC; Chen YJ; Feng TH; Juang HH
    Cancer Lett; 2014 Dec; 355(2):242-52. PubMed ID: 25218595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor.
    Lin SC; Kao SY; Chang JC; Liu YC; Yu EH; Tseng SH; Liu CJ; Chang KW
    Oncotarget; 2016 Sep; 7(38):61355-61365. PubMed ID: 27542258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of newly established oral cancer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells.
    Lee EJ; Kim J; Lee SA; Kim EJ; Chun YC; Ryu MH; Yook JI
    Exp Mol Med; 2005 Oct; 37(5):379-90. PubMed ID: 16264262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple genotypic aberrances associate to terminal differentiation-deficiency of an oral squamous cell carcinoma in serum-free culture.
    Roberg K; Ceder R; Farnebo L; Norberg-Spaak L; Grafström RC
    Differentiation; 2008 Oct; 76(8):868-80. PubMed ID: 18452551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD47-SIRPα Signaling Induces Epithelial-Mesenchymal Transition and Cancer Stemness and Links to a Poor Prognosis in Patients with Oral Squamous Cell Carcinoma.
    Pai S; Bamodu OA; Lin YK; Lin CS; Chu PY; Chien MH; Wang LS; Hsiao M; Yeh CT; Tsai JT
    Cells; 2019 Dec; 8(12):. PubMed ID: 31861233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-κB pathway.
    Yao Y; Zhou WY; He RX
    Biomed Pharmacother; 2019 Jan; 109():1994-2004. PubMed ID: 30551455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression.
    Fang Z; Zhao J; Xie W; Sun Q; Wang H; Qiao B
    Cancer Med; 2017 Dec; 6(12):2897-2908. PubMed ID: 29125238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-146a promotes proliferation, invasion, and epithelial-to-mesenchymal transition in oral squamous carcinoma cells.
    Wang F; Ye LJ; Wang FJ; Liu HF; Wang XL
    Environ Toxicol; 2020 Oct; 35(10):1050-1057. PubMed ID: 32469461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of novel cell lines established from three human oral squamous cell carcinomas.
    Lee G; Kim YB; Kim JH; Kim MS; Shin KH; Won YS; Lee JI; Choung PH; Hyun BH; Min BM
    Int J Oncol; 2002 Jun; 20(6):1151-9. PubMed ID: 12011992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract.
    Lin SC; Liu CJ; Chiu CP; Chang SM; Lu SY; Chen YJ
    J Oral Pathol Med; 2004 Feb; 33(2):79-86. PubMed ID: 14720193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HPV acting on E-cadherin, p53 and p16: literature review.
    Ottria L; Candotto V; Cura F; Baggi L; Arcuri C; Nardone M; Gaudio RM; Gatto R; Spadari F; Carinci F
    J Biol Regul Homeost Agents; 2018; 32(2 Suppl. 1):73-79. PubMed ID: 29460521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma.
    Wang H; Luo Q; Feng X; Zhang R; Li J; Chen F
    BMC Cancer; 2018 May; 18(1):500. PubMed ID: 29716544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma.
    Sogabe Y; Suzuki H; Toyota M; Ogi K; Imai T; Nojima M; Sasaki Y; Hiratsuka H; Tokino T
    Int J Oncol; 2008 Jun; 32(6):1253-61. PubMed ID: 18497987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression.
    Ma J; Ren Y; Zhang L; Kong X; Wang T; Shi Y; Bu R
    PLoS One; 2017; 12(4):e0174309. PubMed ID: 28369091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity.
    Chen YF; Yang CC; Kao SY; Liu CJ; Lin SC; Chang KW
    Cancer Res; 2016 Aug; 76(16):4872-86. PubMed ID: 27221705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.