BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33302873)

  • 1. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection.
    Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM
    BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Mechanism of miR160d in Regulating Kiwifruit Resistance to
    Li Z; Yang S; Ma Y; Sui Y; Xing H; Zhang W; Liao Q; Jiang Y
    J Agric Food Chem; 2023 Jul; 71(27):10304-10313. PubMed ID: 37381782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of AcPGIP in the kiwifruit (Actinidia chinensis) response to Botrytis cinerea.
    Li ZX; Chen M; Miao YX; Li Q; Ren Y; Zhang WL; Lan JB; Liu YQ
    Funct Plant Biol; 2021 Nov; 48(12):1254-1263. PubMed ID: 34600600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis).
    Wu L; Lan J; Xiang X; Xiang H; Jin Z; Khan S; Liu Y
    PLoS One; 2020; 15(10):e0240355. PubMed ID: 33044982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea.
    Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM
    Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of
    Riquelme D; Aravena Z; Valdés-Gómez H; Latorre BA; Díaz GA; Zoffoli JP
    Plant Dis; 2021 Aug; 105(8):2129-2140. PubMed ID: 33258430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
    Audenaert K; De Meyer GB; Höfte MM
    Plant Physiol; 2002 Feb; 128(2):491-501. PubMed ID: 11842153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea.
    Li X; Zhang Y; Huang L; Ouyang Z; Hong Y; Zhang H; Li D; Song F
    BMC Plant Biol; 2014 Jun; 14():166. PubMed ID: 24930014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature conditioning induces chilling tolerance in 'Hayward' kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels.
    Yang Q; Zhang Z; Rao J; Wang Y; Sun Z; Ma Q; Dong X
    J Sci Food Agric; 2013 Dec; 93(15):3691-9. PubMed ID: 23633231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin Induces Oxidative Stress in
    Hua C; Kai K; Bi W; Shi W; Liu Y; Zhang D
    J Agric Food Chem; 2019 Jul; 67(28):7968-7976. PubMed ID: 31062982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole-3-acetic acid enhances the biocontrol of Penicillium expansum and Botrytis cinerea on pear fruit by Cryptococcus laurentii.
    Yu T; Zheng XD
    FEMS Yeast Res; 2007 May; 7(3):459-64. PubMed ID: 17286561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea.
    Wang H; Kou X; Wu C; Fan G; Li T
    J Sci Food Agric; 2020 Aug; 100(11):4272-4281. PubMed ID: 32378217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton.
    Gao W; Long L; Xu L; Lindsey K; Zhang X; Zhu L
    J Integr Plant Biol; 2016 May; 58(5):503-13. PubMed ID: 26407676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato.
    Yang C; Liang Y; Qiu D; Zeng H; Yuan J; Yang X
    BMC Plant Biol; 2018 Jun; 18(1):103. PubMed ID: 29866036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
    Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM
    Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.