These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 33302873)
1. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection. Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873 [TBL] [Abstract][Full Text] [Related]
2. Molecular Mechanism of miR160d in Regulating Kiwifruit Resistance to Li Z; Yang S; Ma Y; Sui Y; Xing H; Zhang W; Liao Q; Jiang Y J Agric Food Chem; 2023 Jul; 71(27):10304-10313. PubMed ID: 37381782 [TBL] [Abstract][Full Text] [Related]
3. The role of AcPGIP in the kiwifruit (Actinidia chinensis) response to Botrytis cinerea. Li ZX; Chen M; Miao YX; Li Q; Ren Y; Zhang WL; Lan JB; Liu YQ Funct Plant Biol; 2021 Nov; 48(12):1254-1263. PubMed ID: 34600600 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). Wu L; Lan J; Xiang X; Xiang H; Jin Z; Khan S; Liu Y PLoS One; 2020; 15(10):e0240355. PubMed ID: 33044982 [TBL] [Abstract][Full Text] [Related]
5. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea. Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076 [TBL] [Abstract][Full Text] [Related]
7. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
10. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Audenaert K; De Meyer GB; Höfte MM Plant Physiol; 2002 Feb; 128(2):491-501. PubMed ID: 11842153 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799 [TBL] [Abstract][Full Text] [Related]
12. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. Li X; Zhang Y; Huang L; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Jun; 14():166. PubMed ID: 24930014 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature conditioning induces chilling tolerance in 'Hayward' kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels. Yang Q; Zhang Z; Rao J; Wang Y; Sun Z; Ma Q; Dong X J Sci Food Agric; 2013 Dec; 93(15):3691-9. PubMed ID: 23633231 [TBL] [Abstract][Full Text] [Related]
14. Curcumin Induces Oxidative Stress in Hua C; Kai K; Bi W; Shi W; Liu Y; Zhang D J Agric Food Chem; 2019 Jul; 67(28):7968-7976. PubMed ID: 31062982 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of AcWRKY94 in response to Pseudomonas syringae pv. actinidiae in kiwifruit. Lu L; Gu X; Wang Z; Gao J; Fan F; Song G; Zhong C; Zhang H Plant Physiol Biochem; 2024 Sep; 214():108933. PubMed ID: 39033650 [TBL] [Abstract][Full Text] [Related]
17. Indole-3-acetic acid enhances the biocontrol of Penicillium expansum and Botrytis cinerea on pear fruit by Cryptococcus laurentii. Yu T; Zheng XD FEMS Yeast Res; 2007 May; 7(3):459-64. PubMed ID: 17286561 [TBL] [Abstract][Full Text] [Related]
18. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea. Wang H; Kou X; Wu C; Fan G; Li T J Sci Food Agric; 2020 Aug; 100(11):4272-4281. PubMed ID: 32378217 [TBL] [Abstract][Full Text] [Related]
19. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. Gao W; Long L; Xu L; Lindsey K; Zhang X; Zhu L J Integr Plant Biol; 2016 May; 58(5):503-13. PubMed ID: 26407676 [TBL] [Abstract][Full Text] [Related]
20. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato. Yang C; Liang Y; Qiu D; Zeng H; Yuan J; Yang X BMC Plant Biol; 2018 Jun; 18(1):103. PubMed ID: 29866036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]