These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33302960)
1. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Zhang Y; Su M; Qin N; Nielsen J; Liu Z Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960 [TBL] [Abstract][Full Text] [Related]
2. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454 [TBL] [Abstract][Full Text] [Related]
3. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering. Lian J; Zhao H ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359 [TBL] [Abstract][Full Text] [Related]
4. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. de Jong BW; Shi S; Siewers V; Nielsen J Microb Cell Fact; 2014 Mar; 13(1):39. PubMed ID: 24618091 [TBL] [Abstract][Full Text] [Related]
5. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. van Rossum HM; Kozak BU; Pronk JT; van Maris AJA Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336 [TBL] [Abstract][Full Text] [Related]
7. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582 [TBL] [Abstract][Full Text] [Related]
8. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. van Rossum HM; Kozak BU; Niemeijer MS; Duine HJ; Luttik MA; Boer VM; Kötter P; Daran JM; van Maris AJ; Pronk JT FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26895788 [TBL] [Abstract][Full Text] [Related]
9. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Teixeira PG; Ferreira R; Zhou YJ; Siewers V; Nielsen J Microb Cell Fact; 2017 Mar; 16(1):45. PubMed ID: 28298234 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Chen L; Zhang J; Lee J; Chen WN Appl Microbiol Biotechnol; 2014 Aug; 98(15):6739-50. PubMed ID: 24769906 [TBL] [Abstract][Full Text] [Related]
11. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Yu T; Zhou YJ; Huang M; Liu Q; Pereira R; David F; Nielsen J Cell; 2018 Sep; 174(6):1549-1558.e14. PubMed ID: 30100189 [TBL] [Abstract][Full Text] [Related]
12. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related]
13. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034 [TBL] [Abstract][Full Text] [Related]
14. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol. van Rossum HM; Kozak BU; Niemeijer MS; Dykstra JC; Luttik MA; Daran JM; van Maris AJ; Pronk JT mBio; 2016 May; 7(3):. PubMed ID: 27143389 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942. Hirokawa Y; Kubo T; Soma Y; Saruta F; Hanai T Metab Eng; 2020 Jan; 57():23-30. PubMed ID: 31377410 [TBL] [Abstract][Full Text] [Related]
16. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Lian J; Si T; Nair NU; Zhao H Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351 [TBL] [Abstract][Full Text] [Related]
17. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway. Liu H; Fan J; Wang C; Li C; Zhou X J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164 [TBL] [Abstract][Full Text] [Related]
18. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. Gruchattka E; Kayser O PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782 [TBL] [Abstract][Full Text] [Related]
19. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548 [TBL] [Abstract][Full Text] [Related]
20. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Kocharin K; Siewers V; Nielsen J Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]