BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33302960)

  • 1. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae.
    Zhang Y; Su M; Qin N; Nielsen J; Liu Z
    Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.
    Lian J; Zhao H
    ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway.
    de Jong BW; Shi S; Siewers V; Nielsen J
    Microb Cell Fact; 2014 Mar; 13(1):39. PubMed ID: 24618091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae.
    Tang X; Feng H; Chen WN
    Metab Eng; 2013 Mar; 16():95-102. PubMed ID: 23353549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae.
    Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.
    van Rossum HM; Kozak BU; Niemeijer MS; Duine HJ; Luttik MA; Boer VM; Kötter P; Daran JM; van Maris AJ; Pronk JT
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26895788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.
    Teixeira PG; Ferreira R; Zhou YJ; Siewers V; Nielsen J
    Microb Cell Fact; 2017 Mar; 16(1):45. PubMed ID: 28298234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.
    Chen L; Zhang J; Lee J; Chen WN
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6739-50. PubMed ID: 24769906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis.
    Yu T; Zhou YJ; Huang M; Liu Q; Pereira R; David F; Nielsen J
    Cell; 2018 Sep; 174(6):1549-1558.e14. PubMed ID: 30100189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol.
    van Rossum HM; Kozak BU; Niemeijer MS; Dykstra JC; Luttik MA; Daran JM; van Maris AJ; Pronk JT
    mBio; 2016 May; 7(3):. PubMed ID: 27143389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942.
    Hirokawa Y; Kubo T; Soma Y; Saruta F; Hanai T
    Metab Eng; 2020 Jan; 57():23-30. PubMed ID: 31377410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
    Lian J; Si T; Nair NU; Zhao H
    Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway.
    Liu H; Fan J; Wang C; Li C; Zhou X
    J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.
    Kocharin K; Siewers V; Nielsen J
    Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.