BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33303016)

  • 21. Cell clustering for spatial transcriptomics data with graph neural networks.
    Li J; Chen S; Pan X; Yuan Y; Shen HB
    Nat Comput Sci; 2022 Jun; 2(6):399-408. PubMed ID: 38177586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis.
    Xu Y; McCord RP
    BMC Bioinformatics; 2021 Aug; 22(1):397. PubMed ID: 34372758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Edge-relational window-attentional graph neural network for gene expression prediction in spatial transcriptomics analysis.
    Chen C; Zhang Z; Tang P; Liu X; Huang B
    Comput Biol Med; 2024 May; 174():108449. PubMed ID: 38626512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics.
    Li Z; Chen X; Zhang X; Jiang R; Chen S
    Genome Res; 2023 Oct; 33(10):1757-1773. PubMed ID: 37903634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CLARIFY: cell-cell interaction and gene regulatory network refinement from spatially resolved transcriptomics.
    Bafna M; Li H; Zhang X
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i484-i493. PubMed ID: 37387180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization.
    Wang L; Liu C; Gao Y; Zhang XH; Liu Z
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37436699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semla: a versatile toolkit for spatially resolved transcriptomics analysis and visualization.
    Larsson L; Franzén L; Ståhl PL; Lundeberg J
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37846051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CGINet: graph convolutional network-based model for identifying chemical-gene interaction in an integrated multi-relational graph.
    Wang W; Yang X; Wu C; Yang C
    BMC Bioinformatics; 2020 Nov; 21(1):544. PubMed ID: 33243142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring modulators of genetic interactions with epistatic nested effects models.
    Pirkl M; Diekmann M; van der Wees M; Beerenwinkel N; Fröhlich H; Markowetz F
    PLoS Comput Biol; 2017 Apr; 13(4):e1005496. PubMed ID: 28406896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A count-based model for delineating cell-cell interactions in spatial transcriptomics data.
    Sarkar H; Chitra U; Gold J; Raphael BJ
    Bioinformatics; 2024 Jun; 40(Supplement_1):i481-i489. PubMed ID: 38940134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles.
    Matsubara T; Ochiai T; Hayashida M; Akutsu T; Nacher JC
    J Bioinform Comput Biol; 2019 Jun; 17(3):1940007. PubMed ID: 31288636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study.
    Fatemi M; Feng E; Sharma C; Azher Z; Goel T; Ramwala O; Palisoul SM; Barney RE; Perreard L; Kolling FW; Salas LA; Christensen BC; Tsongalis GJ; Vaickus LJ; Levy JJ
    J Pathol Inform; 2023; 14():100308. PubMed ID: 37114077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AGF-PPIS: A protein-protein interaction site predictor based on an attention mechanism and graph convolutional networks.
    Fu X; Yuan Y; Qiu H; Suo H; Song Y; Li A; Zhang Y; Xiao C; Li Y; Dou L; Zhang Z; Cui F
    Methods; 2024 Feb; 222():142-151. PubMed ID: 38242383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating Long-Range Regulatory Interactions to Predict Gene Expression Using Graph Convolutional Networks.
    Bigness J; Loinaz X; Patel S; Larschan E; Singh R
    J Comput Biol; 2022 May; 29(5):409-424. PubMed ID: 35325548
    [No Abstract]   [Full Text] [Related]  

  • 40. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.