These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33303038)
1. A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects. Yang Z; Song Z; Nie X; Guo K; Gu Y Stem Cell Res Ther; 2020 Dec; 11(1):533. PubMed ID: 33303038 [TBL] [Abstract][Full Text] [Related]
2. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
3. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
5. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of Abdominal Wall Defect with Composite Scaffold of 3D Printed ADM/PLA in a Rat Model. Song Z; Yang D; Hu Q; Wang Y; Zhang H; Dong W; Yang J; Gu Y Macromol Biosci; 2023 Apr; 23(4):e2200521. PubMed ID: 36746773 [TBL] [Abstract][Full Text] [Related]
7. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. Tarafder S; Dernell WS; Bandyopadhyay A; Bose S J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131 [TBL] [Abstract][Full Text] [Related]
8. [Study on preparation of 3D printing degradable tissue engineering ossicles]. Lu XX; Li XX; Zhao DH; Ji JY; Tong BS; Sun JJ Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Aug; 55(8):764-768. PubMed ID: 32791775 [No Abstract] [Full Text] [Related]
9. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process. Park JH; Jung JW; Kang HW; Cho DW Biofabrication; 2014 Jun; 6(2):025003. PubMed ID: 24658060 [TBL] [Abstract][Full Text] [Related]
10. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model. Park H; Kim IG; Wu Y; Cho H; Shin JW; Park SA; Chung EJ Head Neck; 2021 Mar; 43(3):833-848. PubMed ID: 33241663 [TBL] [Abstract][Full Text] [Related]
11. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds. Bose S; Tarafder S; Bandyopadhyay A Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine. Li S; Su L; Li X; Yang L; Yang M; Zong H; Zong Q; Tang J; He H Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110644. PubMed ID: 32204076 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
16. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Song Z; Peng Z; Liu Z; Yang J; Tang R; Gu Y Tissue Eng Part A; 2013 Jul; 19(13-14):1543-53. PubMed ID: 23402600 [TBL] [Abstract][Full Text] [Related]
18. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Hogan KJ; Öztatlı H; Perez MR; Si S; Umurhan R; Jui E; Wang Z; Jiang EY; Han SR; Diba M; Jane Grande-Allen K; Garipcan B; Mikos AG Regen Biomater; 2023; 10():rbad090. PubMed ID: 37954896 [TBL] [Abstract][Full Text] [Related]
19. Scaffold fabrication by indirect three-dimensional printing. Lee M; Dunn JC; Wu BM Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]