BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33303173)

  • 21. Aqueous biphasic systems formed by hydrophilic and hydrophobic deep eutectic solvents for the partitioning of dyes.
    Xu K; Xu P; Wang Y
    Talanta; 2020 Jun; 213():120839. PubMed ID: 32200927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular-Level Insights into the Microstructure of a Hydrated and Nanoconfined Deep Eutectic Solvent.
    Panda S; Kundu K; Kiefer J; Umapathy S; Gardas RL
    J Phys Chem B; 2019 Apr; 123(15):3359-3371. PubMed ID: 30924657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring.
    Huang Y; Feng H; Liu W; Zhang S; Tang C; Chen J; Qian Z
    J Mater Chem B; 2017 Jul; 5(26):5120-5127. PubMed ID: 32264097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging.
    Cao H; Chen Z; Zheng H; Huang Y
    Biosens Bioelectron; 2014 Dec; 62():189-95. PubMed ID: 24999996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Hydrogen Bond Donor Identity and Intentional Water Addition on the Properties of Gelatin-Supported Deep Eutectic Solvent Gels.
    Owyeung RE; Sonkusale SR; Panzer MJ
    J Phys Chem B; 2020 Jul; 124(28):5986-5992. PubMed ID: 32544333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.
    Xu K; Wang Y; Huang Y; Li N; Wen Q
    Anal Chim Acta; 2015 Mar; 864():9-20. PubMed ID: 25732422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemiluminescence of copper nanoclusters and its application for trihexyphenidyl hydrochloride detection.
    Chen X; Zhang J; Li Y; Han S
    Luminescence; 2018 Aug; 33(5):962-967. PubMed ID: 29785806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications.
    Saleh SM; El-Sayed WA; El-Manawaty MA; Gassoumi M; Ali R
    Biosensors (Basel); 2022 Mar; 12(4):. PubMed ID: 35448257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper nanoclusters@Al
    Qu F; Wang B; Li K; You J; Han W
    Mikrochim Acta; 2020 Jul; 187(8):457. PubMed ID: 32683631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refractive Index of 48 Neat Deep Eutectic Solvents and of Selected Mixtures: Effect of Temperature, Hydrogen-Bonding Donors, Hydrogen-Bonding Acceptors, Mole Ratio, and Water.
    Luan J; Cheng Y; Xue F; Cui L; Wang D
    ACS Omega; 2023 Jul; 8(28):25582-25591. PubMed ID: 37483222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Fluorometric Assay for Detection of Cysteine as a Reducing Agent and Template in Formation of Copper Nanoclusters.
    Borghei YS; Hosseini M; Khoobi M; Ganjali MR
    J Fluoresc; 2017 Mar; 27(2):529-536. PubMed ID: 27858297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphology Modulation of Ionic Surfactant Micelles in Ternary Deep Eutectic Solvents.
    Atri RS; Sanchez-Fernandez A; Hammond OS; Manasi I; Doutch J; Tellam JP; Edler KJ
    J Phys Chem B; 2020 Jul; 124(28):6004-6014. PubMed ID: 32551622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids.
    Teles ARR; Capela EV; Carmo RS; Coutinho JAP; Silvestre AJD; Freire MG
    Fluid Phase Equilib; 2017 Sep; 448():15-21. PubMed ID: 30270965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Dynamics Insights and Water Stability of Hydrophobic Deep Eutectic Solvents Aided Extraction of Nitenpyram from an Aqueous Environment.
    Paul N; Naik PK; Ribeiro BD; Gooh Pattader PS; Marrucho IM; Banerjee T
    J Phys Chem B; 2020 Aug; 124(34):7405-7420. PubMed ID: 32706582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine.
    Gu Z; Cao Z
    Anal Bioanal Chem; 2018 Aug; 410(20):4991-4999. PubMed ID: 29882076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of ionic and non-ionic surfactants in type IV cerium nitrate and urea based deep eutectic solvent.
    Manasi I; Andalibi MR; Atri RS; Hooton J; King SM; Edler KJ
    J Chem Phys; 2021 Aug; 155(8):084902. PubMed ID: 34470344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutathione-stabilized Cu nanocluster-based fluorescent probe for sensitive and selective detection of Hg
    Luo T; Zhang S; Wang Y; Wang M; Liao M; Kou X
    Luminescence; 2017 Sep; 32(6):1092-1099. PubMed ID: 28417589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Sensitive Fluorescence Sensor for Tetracycline Determination Based on Adenine Thymine-Rich Single-Stranded DNA-Templated Copper Nanoclusters.
    Wu NN; Chen LG; Wang HB
    Appl Spectrosc; 2023 Oct; 77(10):1206-1213. PubMed ID: 37545405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly fluorescent copper nanoclusters for sensing and bioimaging.
    An Y; Ren Y; Bick M; Dudek A; Hong-Wang Waworuntu E; Tang J; Chen J; Chang B
    Biosens Bioelectron; 2020 Apr; 154():112078. PubMed ID: 32056972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Hao Z; Liu Y
    Mikrochim Acta; 2019 May; 186(6):364. PubMed ID: 31104105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.