These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33303177)
1. Direct solid sampling for speciation of Zn García-Mesa JC; Montoro-Leal P; Rodríguez-Moreno A; López Guerrero MM; Vereda Alonso EI Talanta; 2021 Feb; 223(Pt 1):121795. PubMed ID: 33303177 [TBL] [Abstract][Full Text] [Related]
2. sp-ICP-MS and HR-CS-GFAAS as useful available techniques for the size characterization and speciation of ionic and nanoparticular zinc in cosmetic and pharmaceutical samples. García-Mesa JC; Morales-Benítez I; Montoro-Leal P; López Guerrero MM; Vereda Alonso EI Talanta; 2024 Feb; 268(Pt 1):125360. PubMed ID: 37913598 [TBL] [Abstract][Full Text] [Related]
3. Direct solid sampling of biological species for the rapid determination of selenium by high-resolution continuum source graphite furnace atomic absorption spectrometry. Gómez-Nieto B; Gismera MJ; Sevilla MT; R Procopio J Anal Chim Acta; 2022 Apr; 1202():339637. PubMed ID: 35341530 [TBL] [Abstract][Full Text] [Related]
4. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics. Barros AI; Victor de Babos D; Ferreira EC; Gomes Neto JA Talanta; 2016 Dec; 161():547-553. PubMed ID: 27769446 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry. Cárdenas Valdivia A; Vereda Alonso E; López Guerrero MM; Gonzalez-Rodriguez J; Cano Pavón JM; García de Torres A Talanta; 2018 Mar; 179():1-8. PubMed ID: 29310207 [TBL] [Abstract][Full Text] [Related]
6. Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry. Gunduz S; Akman S Regul Toxicol Pharmacol; 2013 Feb; 65(1):34-7. PubMed ID: 23099440 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil. Silva MM; Damin IC; Vale MG; Welz B Talanta; 2007 Mar; 71(5):1877-85. PubMed ID: 19071537 [TBL] [Abstract][Full Text] [Related]
8. Determination of total sulfur in food samples by solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry. Ozbek N; Akman S J Agric Food Chem; 2013 May; 61(20):4816-21. PubMed ID: 23635016 [TBL] [Abstract][Full Text] [Related]
9. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions. Gómez-Nieto B; Gismera MJ; Sevilla MT; Satrústegui J; Procopio JR Talanta; 2017 Aug; 170():15-21. PubMed ID: 28501151 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Soares BM; Santos RF; Bolzan RC; Muller EI; Primel EG; Duarte FA Talanta; 2016 Nov; 160():454-460. PubMed ID: 27591638 [TBL] [Abstract][Full Text] [Related]
11. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis. Silva AS; Brandao GC; Matos GD; Ferreira SL Talanta; 2015 Nov; 144():39-43. PubMed ID: 26452789 [TBL] [Abstract][Full Text] [Related]
12. Determination of arsenic in agricultural soil samples using High-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Schneider M; Cadorim HR; Welz B; Carasek E; Feldmann J Talanta; 2018 Oct; 188():722-728. PubMed ID: 30029438 [TBL] [Abstract][Full Text] [Related]
13. Direct solid sample analysis with graphite furnace atomic absorption spectrometry—a fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood. Zmozinski AV; Llorente-Mirandes T; Damin ICF; López-Sánchez JF; Vale MGR; Welz B; Silva MM Talanta; 2015 Mar; 134():224-231. PubMed ID: 25618661 [TBL] [Abstract][Full Text] [Related]
14. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. Pereira ÉR; de Almeida TS; Borges DL; Carasek E; Welz B; Feldmann J; Campo Menoyo JD Talanta; 2016 Apr; 150():142-7. PubMed ID: 26838392 [TBL] [Abstract][Full Text] [Related]
15. Fast and direct screening of copper in micro-volumes of distilled alcoholic beverages by high-resolution continuum source graphite furnace atomic absorption spectrometry. Ajtony Z; Laczai N; Dravecz G; Szoboszlai N; Marosi Á; Marlok B; Streli C; Bencs L Food Chem; 2016 Dec; 213():799-805. PubMed ID: 27451250 [TBL] [Abstract][Full Text] [Related]
16. An environmentally friendly approach for the characterization of construction materials: determination of trace, minor, and major elements by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Gómez-Nieto B; Isabel-Cabrera C; Gismera MJ; Sevilla MT; Procopio JR; Sánchez de Rojas MI Anal Methods; 2023 Mar; 15(9):1105-1115. PubMed ID: 36786775 [TBL] [Abstract][Full Text] [Related]
17. High-resolution continuum source graphite furnace molecular absorption spectrometry compared with ion chromatography for quantitative determination of dissolved fluoride in river water samples. Ley P; Sturm M; Ternes TA; Meermann B Anal Bioanal Chem; 2017 Dec; 409(30):6949-6958. PubMed ID: 28975375 [TBL] [Abstract][Full Text] [Related]
18. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters. Jiang HM; Yang T; Wang YH; Lian HZ; Hu X Talanta; 2013 Nov; 116():361-7. PubMed ID: 24148416 [TBL] [Abstract][Full Text] [Related]
19. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues. Resano M; Briceño J; Aramendía M; Belarra MA Anal Chim Acta; 2007 Jan; 582(2):214-22. PubMed ID: 17386495 [TBL] [Abstract][Full Text] [Related]
20. [Determination of beryllium in geological samples with slurry sampling and probe atomization in graphite furnace atomic absorption spectrometry]. Hou S; Chang C Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Feb; 18(1):73-6. PubMed ID: 15810338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]