BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 33303198)

  • 1. Long-term impacts of nutrient control, climate change, and invasive clams on phytoplankton and cyanobacteria biomass in a large temperate river.
    Minaudo C; Abonyi A; Leitão M; Lançon AM; Floury M; Descy JP; Moatar F
    Sci Total Environ; 2021 Feb; 756():144074. PubMed ID: 33303198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dramatic changes in a phytoplankton community in response to local and global pressures: a 24-year survey of the river Loire (France).
    Larroudé S; Massei N; Reyes-Marchant P; Delattre C; Humbert JF
    Glob Chang Biol; 2013 May; 19(5):1620-31. PubMed ID: 23505160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantile regression illuminates the successes and shortcomings of long-term eutrophication remediation efforts in an urban river system.
    Determan RT; White JD; McKenna LW
    Water Res; 2021 Sep; 202():117434. PubMed ID: 34388474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous increases of filter-feeding fish and bivalves are key for controlling cyanobacterial blooms in a shallow eutrophic lake.
    Zhang Y; Shen R; Gu X; Li K; Chen H; He H; Mao Z; Johnson RK
    Water Res; 2023 Oct; 245():120579. PubMed ID: 37688854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of environmental factors on phytoplankton communities and benthic nutrient interactions in a shallow lake and adjoining rivers in China.
    Rao K; Zhang X; Yi XJ; Li ZS; Wang P; Huang GW; Guo XX
    Sci Total Environ; 2018 Apr; 619-620():1661-1672. PubMed ID: 29089138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate.
    Carey CC; Ibelings BW; Hoffmann EP; Hamilton DP; Brookes JD
    Water Res; 2012 Apr; 46(5):1394-407. PubMed ID: 22217430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuisance phytoplankton transport is enhanced by high flow in the main river for drinking water in Uruguay.
    Somma A; Bonilla S; Aubriot L
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5634-5647. PubMed ID: 34424466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu.
    Wu P; Lu Y; Lu Y; Dai J; Huang T
    Water Environ Res; 2020 Jan; 92(1):138-148. PubMed ID: 31486194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.
    Lu X; Song S; Lu Y; Wang T; Liu Z; Li Q; Zhang M; Suriyanarayanan S; Jenkins A
    Environ Sci Process Impacts; 2017 Oct; 19(10):1300-1311. PubMed ID: 28858346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria.
    Elliott JA
    Water Res; 2012 Apr; 46(5):1364-71. PubMed ID: 22244968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir.
    Bucak T; Trolle D; Tavşanoğlu ÜN; Çakıroğlu Aİ; Özen A; Jeppesen E; Beklioğlu M
    Sci Total Environ; 2018 Apr; 621():802-816. PubMed ID: 29202291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication.
    Yang Y; Wang H; Yan S; Wang T; Zhang P; Zhang H; Wang H; Hansson LA; Xu J
    Environ Sci Technol; 2023 Aug; 57(32):11767-11778. PubMed ID: 37535835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK).
    Bussi G; Whitehead PG; Bowes MJ; Read DS; Prudhomme C; Dadson SJ
    Sci Total Environ; 2016 Dec; 572():1507-1519. PubMed ID: 26927961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene.
    Taranu ZE; Gregory-Eaves I; Leavitt PR; Bunting L; Buchaca T; Catalan J; Domaizon I; Guilizzoni P; Lami A; McGowan S; Moorhouse H; Morabito G; Pick FR; Stevenson MA; Thompson PL; Vinebrooke RD
    Ecol Lett; 2015 Apr; 18(4):375-84. PubMed ID: 25728551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes.
    Budzyńska A; Rosińska J; Pełechata A; Toporowska M; Napiórkowska-Krzebietke A; Kozak A; Messyasz B; Pęczuła W; Kokociński M; Szeląg-Wasielewska E; Grabowska M; Mądrecka B; Niedźwiecki M; Alcaraz Parraga P; Pełechaty M; Karpowicz M; Pawlik-Skowrońska B
    Sci Total Environ; 2019 Feb; 650(Pt 1):1338-1347. PubMed ID: 30308820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate warming and heat waves alter harmful cyanobacterial blooms along the benthic-pelagic interface.
    Urrutia-Cordero P; Zhang H; Chaguaceda F; Geng H; Hansson LA
    Ecology; 2020 Jul; 101(7):e03025. PubMed ID: 32083737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass?
    Bowes MJ; Gozzard E; Johnson AC; Scarlett PM; Roberts C; Read DS; Armstrong LK; Harman SA; Wickham HD
    Sci Total Environ; 2012 Jun; 426():45-55. PubMed ID: 22503676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas.
    Bonilla S; Aguilera A; Aubriot L; Huszar V; Almanza V; Haakonsson S; Izaguirre I; O'Farrell I; Salazar A; Becker V; Cremella B; Ferragut C; Hernandez E; Palacio H; Rodrigues LC; Sampaio da Silva LH; Santana LM; Santos J; Somma A; Ortega L; Antoniades D
    Harmful Algae; 2023 Jan; 121():102367. PubMed ID: 36639186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.