These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rational Design of Self-Propelling Particles for Unified Cargo Loading and Transportation. Kunti G; Wu Y; Yossifon G Small; 2021 Apr; 17(17):e2007819. PubMed ID: 33709614 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Cargo Loading Modes and Capacity of an Electrically-Powered Active Carrier. Huo X; Wu Y; Boymelgreen A; Yossifon G Langmuir; 2019 Dec; ():. PubMed ID: 31805236 [TBL] [Abstract][Full Text] [Related]
4. Electrical Propulsion and Cargo Transport of Microbowl Shaped Janus Particles. Erez S; Karshalev E; Wu Y; Wang J; Yossifon G Small; 2022 Jan; 18(3):e2101809. PubMed ID: 34761509 [TBL] [Abstract][Full Text] [Related]
5. A Magnetically and Electrically Powered Hybrid Micromotor in Conductive Solutions: Synergistic Propulsion Effects and Label-Free Cargo Transport and Sensing. Wu Y; Yakov S; Fu A; Yossifon G Adv Sci (Weinh); 2023 Mar; 10(8):e2204931. PubMed ID: 36507618 [TBL] [Abstract][Full Text] [Related]
6. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. Wu Y; Fu A; Yossifon G Small; 2020 Jun; 16(22):e1906682. PubMed ID: 32363783 [TBL] [Abstract][Full Text] [Related]
7. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Demirörs AF; Akan MT; Poloni E; Studart AR Soft Matter; 2018 Jun; 14(23):4741-4749. PubMed ID: 29799053 [TBL] [Abstract][Full Text] [Related]
8. Active colloids as mobile microelectrodes for unified label-free selective cargo transport. Boymelgreen AM; Balli T; Miloh T; Yossifon G Nat Commun; 2018 Feb; 9(1):760. PubMed ID: 29472542 [TBL] [Abstract][Full Text] [Related]
9. Optoelectronic Trajectory Reconfiguration and Directed Self-Assembly of Self-Propelling Electrically Powered Active Particles. Das SS; Yossifon G Adv Sci (Weinh); 2023 Jun; 10(16):e2206183. PubMed ID: 37069767 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional electric field traps for manipulation of cells--calculation and experimental verification. Schnelle T; Hagedorn R; Fuhr G; Fiedler S; Müller T Biochim Biophys Acta; 1993 Jun; 1157(2):127-40. PubMed ID: 8507649 [TBL] [Abstract][Full Text] [Related]
11. Electrically controllable cargo delivery with dextran-rich droplets. Li M; Li D J Colloid Interface Sci; 2021 Jan; 582(Pt A):102-111. PubMed ID: 32814218 [TBL] [Abstract][Full Text] [Related]
12. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Sun M; Fan X; Meng X; Song J; Chen W; Sun L; Xie H Nanoscale; 2019 Oct; 11(39):18382-18392. PubMed ID: 31573587 [TBL] [Abstract][Full Text] [Related]
14. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Gangwal S; Cayre OJ; Velev OD Langmuir; 2008 Dec; 24(23):13312-20. PubMed ID: 18973307 [TBL] [Abstract][Full Text] [Related]
15. Manipulation and trapping of sub-micron bioparticles using dielectrophoresis. Green NG; Morgan H; Milner JJ J Biochem Biophys Methods; 1997 Sep; 35(2):89-102. PubMed ID: 9350515 [TBL] [Abstract][Full Text] [Related]
16. The influence of frequency and gravity on the orientation of active metallo-dielectric Janus particles translating under a uniform applied alternating-current electric field. Boymelgreen A; Kunti G; García-Sánchez P; Yossifon G Soft Matter; 2024 May; 20(20):4143-4151. PubMed ID: 38738604 [TBL] [Abstract][Full Text] [Related]
17. Active particles as mobile microelectrodes for selective bacteria electroporation and transport. Wu Y; Fu A; Yossifon G Sci Adv; 2020 Jan; 6(5):eaay4412. PubMed ID: 32064350 [TBL] [Abstract][Full Text] [Related]
18. Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres. Mikkelsen A; Wojciechowski J; Rajňák M; Kurimský J; Khobaib K; Kertmen A; Rozynek Z Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772690 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Xuan X Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561 [TBL] [Abstract][Full Text] [Related]
20. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]