These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33303245)

  • 21. Macromolecular Microencapsulation Using Pine Pollen: Loading Optimization and Controlled Release with Natural Materials.
    Prabhakar AK; Potroz MG; Tan EL; Jung H; Park JH; Cho NJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28428-28439. PubMed ID: 30048107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Holding forces of single-particle dielectrophoretic traps.
    Voldman J; Braff RA; Toner M; Gray ML; Schmidt MA
    Biophys J; 2001 Jan; 80(1):531-41. PubMed ID: 11159423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force acting on a dielectric particle in a concentration gradient by ionic concentration polarization under an externally applied DC electric field.
    Kang KH; Li D
    J Colloid Interface Sci; 2005 Jun; 286(2):792-806. PubMed ID: 15897097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dielectrophoresis Manipulation: Versatile Lateral and Vertical Mechanisms.
    Buyong MR; Kayani AA; Hamzah AA; Yeop Majlis B
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30813614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes.
    Khoshmanesh K; Zhang C; Tovar-Lopez FJ; Nahavandi S; Baratchi S; Kalantar-zadeh K; Mitchell A
    Electrophoresis; 2009 Nov; 30(21):3707-17. PubMed ID: 19810028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis.
    Romero-Creel MF; Goodrich E; Polniak DV; Lapizco-Encinas BH
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dielectrophoretic Traps for Efficient Bead and Cell Trapping and Formation of Aggregates of Controlled Size and Composition.
    Lipp C; Koebel L; Bertsch A; Gauthier M; Bolopion A; Renaud P
    Front Bioeng Biotechnol; 2022; 10():910578. PubMed ID: 35910025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of dielectric Janus particles based on polarizability-dependent induced-charge electroosmotic flow.
    Zhang F; Li D
    J Colloid Interface Sci; 2015 Jun; 448():297-305. PubMed ID: 25746182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cargo-towing synthetic nanomachines: towards active transport in microchip devices.
    Wang J
    Lab Chip; 2012 May; 12(11):1944-50. PubMed ID: 22395152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New light-scattering and field-trapping methods access the internal electric structure of submicron particles, like influenza viruses.
    Gimsa J
    Ann N Y Acad Sci; 1999 Apr; 873():287-98. PubMed ID: 10372177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles.
    Mikkelsen A; Kertmen A; Khobaib K; Rajňák M; Kurimský J; Rozynek Z
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29065465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J
    Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling and simulation of dielectrophoretic particle-particle interactions and assembly.
    Hossan MR; Dillon R; Roy AK; Dutta P
    J Colloid Interface Sci; 2013 Mar; 394():619-29. PubMed ID: 23348000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.
    Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Simple and Double Yeast Cells Using Dielectrophoretic Force Measurement.
    García-Diego FJ; Rubio-Chavarría M; Beltrán P; Espinós FJ
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31484453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectrophoretic manipulation of cells with spiral electrodes.
    Wang XB; Huang Y; Wang X; Becker FF; Gascoyne PR
    Biophys J; 1997 Apr; 72(4):1887-99. PubMed ID: 9083692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.