BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33303468)

  • 1. Single-arm prospective interventional study assessing feasibility of using gallium-68 ventilation and perfusion PET/CT to avoid functional lung in patients with stage III non-small cell lung cancer.
    Bucknell N; Hardcastle N; Jackson P; Hofman M; Callahan J; Eu P; Iravani A; Lawrence R; Martin O; Bressel M; Woon B; Blyth B; MacManus M; Byrne K; Steinfort D; Kron T; Hanna G; Ball D; Siva S
    BMJ Open; 2020 Dec; 10(12):e042465. PubMed ID: 33303468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer.
    Siva S; Callahan J; Kron T; Martin OA; MacManus MP; Ball DL; Hicks RJ; Hofman MS
    BMC Cancer; 2014 Oct; 14():740. PubMed ID: 25277150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personal innovative approach in radiation therapy of lung cancer- functional lung avoidance SPECT-guided (ASPECT) radiation therapy: a study protocol for phase II randomised double-blind clinical trial.
    Khalil AA; Hau E; Gebski V; Grau C; Gee H; Nyeng TB; West K; Kramer S; Farlow D; Knap M; Møller DS; Hoffmann L; Farr KP
    BMC Cancer; 2021 Aug; 21(1):940. PubMed ID: 34418994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ga-68 MAA Perfusion 4D-PET/CT Scanning Allows for Functional Lung Avoidance Using Conformal Radiation Therapy Planning.
    Siva S; Devereux T; Ball DL; MacManus MP; Hardcastle N; Kron T; Bressel M; Foroudi F; Plumridge N; Steinfort D; Shaw M; Callahan J; Hicks RJ; Hofman MS
    Technol Cancer Res Treat; 2016 Feb; 15(1):114-21. PubMed ID: 25575575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional lung avoidance and response-adaptive escalation (FLARE) RT: Multimodality plan dosimetry of a precision radiation oncology strategy.
    Lee E; Zeng J; Miyaoka RS; Saini J; Kinahan PE; Sandison GA; Wong T; Vesselle HJ; Rengan R; Bowen SR
    Med Phys; 2017 Jul; 44(7):3418-3429. PubMed ID: 28453861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventilation/Perfusion Positron Emission Tomography--Based Assessment of Radiation Injury to Lung.
    Siva S; Hardcastle N; Kron T; Bressel M; Callahan J; MacManus MP; Shaw M; Plumridge N; Hicks RJ; Steinfort D; Ball DL; Hofman MS
    Int J Radiat Oncol Biol Phys; 2015 Oct; 93(2):408-17. PubMed ID: 26275510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional lung volume mapping with perfusion Single-Photon Emission Computed Tomography scan for radiotherapy planning in patients with locally advanced nonsmall cell lung cancer.
    Follacchio GA; D'Urso P; Cassese R; Ferrara C; Bulzonetti N; Monteleone F; Musio D; Liberatore M; Tombolini V
    Nucl Med Commun; 2020 Oct; 41(10):1026-1033. PubMed ID: 32732597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive planning using positron emission tomography for locally advanced lung cancer: A feasibility study.
    Kelsey CR; Christensen JD; Chino JP; Adamson J; Ready NE; Perez BA
    Pract Radiat Oncol; 2016; 6(2):96-104. PubMed ID: 26723555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An individualized radiation dose escalation trial in non-small cell lung cancer based on FDG-PET imaging.
    Wanet M; Delor A; Hanin FX; Ghaye B; Van Maanen A; Remouchamps V; Clermont C; Goossens S; Lee JA; Janssens G; Bol A; Geets X
    Strahlenther Onkol; 2017 Oct; 193(10):812-822. PubMed ID: 28733723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and Utility of Deformable Image Registration in (68)Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy.
    Hardcastle N; Hofman MS; Hicks RJ; Callahan J; Kron T; MacManus MP; Ball DL; Jackson P; Siva S
    Int J Radiat Oncol Biol Phys; 2015 Sep; 93(1):196-204. PubMed ID: 26279034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additional PET/CT in week 5-6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning?
    Gillham C; Zips D; Pönisch F; Evers C; Enghardt W; Abolmaali N; Zöphel K; Appold S; Hölscher T; Steinbach J; Kotzerke J; Herrmann T; Baumann M
    Radiother Oncol; 2008 Sep; 88(3):335-41. PubMed ID: 18514339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.
    Bradley J; Thorstad WL; Mutic S; Miller TR; Dehdashti F; Siegel BA; Bosch W; Bertrand RJ
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):78-86. PubMed ID: 15093902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial report on feasibility of PET/CT-based image-guided moderate hypofractionated thoracic irradiation in node-positive non-small cell lung Cancer patients with poor prognostic factors and strongly diminished lung function: a retrospective analysis.
    Eze C; Taugner J; Roengvoraphoj O; Schmidt-Hegemann NS; Käsmann L; Wijaya C; Belka C; Manapov F
    Radiat Oncol; 2019 Sep; 14(1):163. PubMed ID: 31484542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.
    van Der Wel A; Nijsten S; Hochstenbag M; Lamers R; Boersma L; Wanders R; Lutgens L; Zimny M; Bentzen SM; Wouters B; Lambin P; De Ruysscher D
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(3):649-55. PubMed ID: 15708242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A clinical study of shrinking field radiation therapy based on (18)F-FDG PET/CT for stage III non-small cell lung cancer.
    Ding X; Li H; Wang Z; Huang W; Li B; Zang R; Sun H; Yi Y
    Technol Cancer Res Treat; 2013 Jun; 12(3):251-7. PubMed ID: 23289475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of shrinking field radiation therapy through 18F-FDG PET/CT after 40 Gy for stage III non-small cell lung cancers.
    Ding XP; Zhang J; Li BS; Li HS; Wang ZT; Yi Y; Sun HF; Wang DQ
    Asian Pac J Cancer Prev; 2012; 13(1):319-23. PubMed ID: 22502693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Dose Escalation using Serial Four-dimensional Positron Emission Tomography/Computed Tomography Scans during Radiotherapy for Locally Advanced Non-small Cell Lung Cancer.
    Yap ML; Sun A; Higgins J; Clarke K; Marshall A; Becker N; Le LW; Vines DC; Bezjak A; Bissonnette JP
    Clin Oncol (R Coll Radiol); 2016 Dec; 28(12):e199-e205. PubMed ID: 27637725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Acute Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy Using Dose-Volume Parameters From Functional Mapping on Gallium 68 Perfusion Positron Emission Tomography/Computed Tomography.
    Lucia F; Bourhis D; Pinot F; Hamya M; Goasduff G; Blanc-Béguin F; Hennebicq S; Mauguen M; Kerleguer K; Schick U; Consigny M; Pradier O; Le Gal G; Salaun PY; Bourbonne V; Le Roux PY
    Int J Radiat Oncol Biol Phys; 2024 Mar; 118(4):952-962. PubMed ID: 37875246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A planning study of radiotherapy dose escalation of PET-active tumour volumes in non-small cell lung cancer patients.
    Møller DS; Khalil AA; Knap MM; Muren LP; Hoffmann L
    Acta Oncol; 2011 Aug; 50(6):883-8. PubMed ID: 21767188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-treatment adaptive planning during thoracic radiation using 68 Ventilation-Perfusion Positron emission tomography.
    Bucknell N; Hardcastle N; Gunewardena R; Nguyen L; Callahan J; Ball D; Selbie L; Kron T; Turgeon GA; Hofman MS; Siva S
    Clin Transl Radiat Oncol; 2023 May; 40():100599. PubMed ID: 36879654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.