These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Molecular scissors cut in on stem cells. Azvolinsky A Nat Med; 2019 Jun; 25(6):864-866. PubMed ID: 31086349 [No Abstract] [Full Text] [Related]
6. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
7. Genome Editing for Sickle Cell Disease: A Little BCL11A Goes a Long Way. Hossain MA; Bungert J Mol Ther; 2017 Mar; 25(3):561-562. PubMed ID: 28190778 [No Abstract] [Full Text] [Related]
8. The Cas9 Hammer-and Sickle: A Challenge for Genome Editors. Urnov FD CRISPR J; 2021 Feb; 4(1):6-13. PubMed ID: 33616446 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Meisel R N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107195 [No Abstract] [Full Text] [Related]
10. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Mehta J N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107196 [No Abstract] [Full Text] [Related]
11. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Reply. Frangoul H; Ho TW; Corbacioglu S N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107197 [No Abstract] [Full Text] [Related]
12. CRISPR in personalized medicine: Industry perspectives in gene editing. Hong A Semin Perinatol; 2018 Dec; 42(8):501-507. PubMed ID: 30376985 [TBL] [Abstract][Full Text] [Related]
13. Induction of Fetal Hemoglobin by Gene Therapy. Walters MC N Engl J Med; 2021 Jan; 384(3):284-285. PubMed ID: 33471981 [No Abstract] [Full Text] [Related]
14. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Dever DP; Bak RO; Reinisch A; Camarena J; Washington G; Nicolas CE; Pavel-Dinu M; Saxena N; Wilkens AB; Mantri S; Uchida N; Hendel A; Narla A; Majeti R; Weinberg KI; Porteus MH Nature; 2016 Nov; 539(7629):384-389. PubMed ID: 27820943 [TBL] [Abstract][Full Text] [Related]
16. Extending Gene Medicines to All in Need. McCune JM; Kiem HP N Engl J Med; 2024 May; 390(18):1721-1722. PubMed ID: 38657269 [No Abstract] [Full Text] [Related]
17. Autologous gene therapy for hemoglobinopathies: From bench to patient's bedside. Locatelli F; Cavazzana M; Frangoul H; Fuente J; Algeri M; Meisel R Mol Ther; 2024 May; 32(5):1202-1218. PubMed ID: 38454604 [TBL] [Abstract][Full Text] [Related]
18. UK first to approve CRISPR treatment for diseases: what you need to know. Wong C Nature; 2023 Nov; 623(7988):676-677. PubMed ID: 37974039 [No Abstract] [Full Text] [Related]
19. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Parums DV Med Sci Monit; 2024 Mar; 30():e944204. PubMed ID: 38425279 [TBL] [Abstract][Full Text] [Related]
20. CRISPR Therapy of Sickle Cell Disease: The Dawning of the Gene Editing Era. Adashi EY; Gruppuso PA; Cohen IG Am J Med; 2024 May; 137(5):390-392. PubMed ID: 38184185 [No Abstract] [Full Text] [Related] [Next] [New Search]