BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 33303678)

  • 1. Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development.
    Babola TA; Li S; Wang Z; Kersbergen CJ; Elgoyhen AB; Coate TM; Bergles DE
    J Neurosci; 2021 Jan; 41(4):594-612. PubMed ID: 33303678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental regulation of spontaneous activity in the Mammalian cochlea.
    Tritsch NX; Bergles DE
    J Neurosci; 2010 Jan; 30(4):1539-50. PubMed ID: 20107081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purinergic Modulation of Activity in the Developing Auditory Pathway.
    Jovanovic S; Milenkovic I
    Neurosci Bull; 2020 Nov; 36(11):1285-1298. PubMed ID: 33040238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells.
    Wang HC; Lin CC; Chong R; Zhang-Hooks Y; Agarwal A; Ellis-Davies G; Rock J; Bergles DE
    Cell; 2015 Dec; 163(6):1348-59. PubMed ID: 26627734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostatic Control of Spontaneous Activity in the Developing Auditory System.
    Babola TA; Li S; Gribizis A; Lee BJ; Issa JB; Wang HC; Crair MC; Bergles DE
    Neuron; 2018 Aug; 99(3):511-524.e5. PubMed ID: 30077356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits.
    Kersbergen CJ; Babola TA; Rock J; Bergles DE
    Cell Rep; 2022 Nov; 41(7):111649. PubMed ID: 36384119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice.
    Kersbergen CJ; Babola TA; Kanold PO; Bergles DE
    PLoS Biol; 2023 Jun; 21(6):e3002160. PubMed ID: 37368868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP.
    Jovanovic S; Radulovic T; Coddou C; Dietz B; Nerlich J; Stojilkovic SS; Rübsamen R; Milenkovic I
    J Physiol; 2017 Feb; 595(4):1315-1337. PubMed ID: 28030754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of spontaneous activity in the developing auditory system.
    Tritsch NX; Yi E; Gale JE; Glowatzki E; Bergles DE
    Nature; 2007 Nov; 450(7166):50-5. PubMed ID: 17972875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.
    Ye Z; Goutman JD; Pyott SJ; Glowatzki E
    J Physiol; 2017 Jun; 595(11):3483-3495. PubMed ID: 28211069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset.
    Tritsch NX; Rodríguez-Contreras A; Crins TT; Wang HC; Borst JG; Bergles DE
    Nat Neurosci; 2010 Sep; 13(9):1050-2. PubMed ID: 20676105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea.
    Johnson SL; Ceriani F; Houston O; Polishchuk R; Polishchuk E; Crispino G; Zorzi V; Mammano F; Marcotti W
    J Neurosci; 2017 Jan; 37(2):258-268. PubMed ID: 28077706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous activity in the developing auditory system.
    Wang HC; Bergles DE
    Cell Tissue Res; 2015 Jul; 361(1):65-75. PubMed ID: 25296716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purinergic regulation of sound transduction and auditory neurotransmission.
    Housley GD; Jagger DJ; Greenwood D; Raybould NP; Salih SG; Järlebark LE; Vlajkovic SM; Kanjhan R; Nikolic P; Muñoz DJ; Thorne PR
    Audiol Neurootol; 2002; 7(1):55-61. PubMed ID: 11914528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efferent feedback controls bilateral auditory spontaneous activity.
    Wang Y; Sanghvi M; Gribizis A; Zhang Y; Song L; Morley B; Barson DG; Santos-Sacchi J; Navaratnam D; Crair M
    Nat Commun; 2021 Apr; 12(1):2449. PubMed ID: 33907194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus.
    Di Guilmi MN; Boero LE; Castagna VC; Rodríguez-Contreras A; Wedemeyer C; Gómez-Casati ME; Elgoyhen AB
    J Neurosci; 2019 Sep; 39(36):7037-7048. PubMed ID: 31217330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in P2Y receptor signalling in mouse cochlear supporting cells.
    Hool SA; Jeng JY; Jagger DJ; Marcotti W; Ceriani F
    J Physiol; 2023 Oct; 601(19):4375-4395. PubMed ID: 37715703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly.
    Appler JM; Goodrich LV
    Prog Neurobiol; 2011 Apr; 93(4):488-508. PubMed ID: 21232575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.