These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 33303678)

  • 21. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly.
    Appler JM; Goodrich LV
    Prog Neurobiol; 2011 Apr; 93(4):488-508. PubMed ID: 21232575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concurrent maturation of inner hair cell synaptic Ca2+ influx and auditory nerve spontaneous activity around hearing onset in mice.
    Wong AB; Jing Z; Rutherford MA; Frank T; Strenzke N; Moser T
    J Neurosci; 2013 Jun; 33(26):10661-6. PubMed ID: 23804089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.
    Barclay M; Constable R; James NR; Thorne PR; Montgomery JM
    Neuroscience; 2016 Jun; 325():50-62. PubMed ID: 27012610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system.
    Kennedy HJ
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):437-45. PubMed ID: 22526733
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Ghimire SR; Deans MR
    J Neurosci; 2019 Oct; 39(41):8013-8023. PubMed ID: 31462532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea.
    Zhang-Hooks Y; Agarwal A; Mishina M; Bergles DE
    Neuron; 2016 Jan; 89(2):337-50. PubMed ID: 26774161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Area-dependent change of response in the rat's inferior colliculus to intracochlear electrical stimulation following neonatal cochlear damage.
    Hatano M; Kelly JB; Zhang H
    Sci Rep; 2019 Apr; 9(1):5643. PubMed ID: 30948747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.
    Kaur T; Zamani D; Tong L; Rubel EW; Ohlemiller KK; Hirose K; Warchol ME
    J Neurosci; 2015 Nov; 35(45):15050-61. PubMed ID: 26558776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea.
    Zachary S; Nowak N; Vyas P; Bonanni L; Fuchs PA
    J Neurosci; 2018 Jun; 38(25):5677-5687. PubMed ID: 29789373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea.
    Sendin G; Bourien J; Rassendren F; Puel JL; Nouvian R
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1999-2004. PubMed ID: 24429348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental regulation of TRPC3 ion channel expression in the mouse cochlea.
    Phan PA; Tadros SF; Kim Y; Birnbaumer L; Housley GD
    Histochem Cell Biol; 2010 Apr; 133(4):437-48. PubMed ID: 20229053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca
    Sherrill HE; Jean P; Driver EC; Sanders TR; Fitzgerald TS; Moser T; Kelley MW
    J Neurosci; 2019 Jul; 39(27):5284-5298. PubMed ID: 31085606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement during Development.
    Wang Z; Jung JS; Inbar TC; Rangoussis KM; Faaborg-Andersen C; Coate TM
    eNeuro; 2020; 7(4):. PubMed ID: 32675174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purinergic modulation of neuronal activity in developing auditory brainstem.
    Dietz B; Jovanovic S; Wielsch B; Nerlich J; Rübsamen R; Milenkovic I
    J Neurosci; 2012 Aug; 32(31):10699-712. PubMed ID: 22855818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compartmentalization of antagonistic Ca
    Moglie MJ; Fuchs PA; Elgoyhen AB; Goutman JD
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2095-E2104. PubMed ID: 29439202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunohistochemical localization of adenosine 5'-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea.
    Järlebark LE; Housley GD; Thorne PR
    J Comp Neurol; 2000 Jun; 421(3):289-301. PubMed ID: 10813788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequential Retraction Segregates SGN Processes during Target Selection in the Cochlea.
    Druckenbrod NR; Goodrich LV
    J Neurosci; 2015 Dec; 35(49):16221-35. PubMed ID: 26658872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea.
    Jeng JY; Ceriani F; Hendry A; Johnson SL; Yen P; Simmons DD; Kros CJ; Marcotti W
    J Physiol; 2020 Jan; 598(1):151-170. PubMed ID: 31661723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.