These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 33303702)
1. PsychoAge and SubjAge: development of deep markers of psychological and subjective age using artificial intelligence. Zhavoronkov A; Kochetov K; Diamandis P; Mitina M Aging (Albany NY); 2020 Dec; 12(23):23548-23577. PubMed ID: 33303702 [TBL] [Abstract][Full Text] [Related]
2. PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Bobrov E; Georgievskaya A; Kiselev K; Sevastopolsky A; Zhavoronkov A; Gurov S; Rudakov K; Del Pilar Bonilla Tobar M; Jaspers S; Clemann S Aging (Albany NY); 2018 Nov; 10(11):3249-3259. PubMed ID: 30414596 [TBL] [Abstract][Full Text] [Related]
3. ExplaiNAble BioLogical Age (ENABL Age): an artificial intelligence framework for interpretable biological age. Qiu W; Chen H; Kaeberlein M; Lee SI Lancet Healthy Longev; 2023 Dec; 4(12):e711-e723. PubMed ID: 37944549 [TBL] [Abstract][Full Text] [Related]
4. DeepMAge: A Methylation Aging Clock Developed with Deep Learning. Galkin F; Mamoshina P; Kochetov K; Sidorenko D; Zhavoronkov A Aging Dis; 2021 Aug; 12(5):1252-1262. PubMed ID: 34341706 [TBL] [Abstract][Full Text] [Related]
5. Deep biomarkers of aging and longevity: from research to applications. Zhavoronkov A; Li R; Ma C; Mamoshina P Aging (Albany NY); 2019 Nov; 11(22):10771-10780. PubMed ID: 31767810 [TBL] [Abstract][Full Text] [Related]
6. Deep Aging Clocks: The Emergence of AI-Based Biomarkers of Aging and Longevity. Zhavoronkov A; Mamoshina P Trends Pharmacol Sci; 2019 Aug; 40(8):546-549. PubMed ID: 31279569 [TBL] [Abstract][Full Text] [Related]
7. Biohorology and biomarkers of aging: Current state-of-the-art, challenges and opportunities. Galkin F; Mamoshina P; Aliper A; de Magalhães JP; Gladyshev VN; Zhavoronkov A Ageing Res Rev; 2020 Jul; 60():101050. PubMed ID: 32272169 [TBL] [Abstract][Full Text] [Related]
8. Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. Mamoshina P; Kochetov K; Putin E; Cortese F; Aliper A; Lee WS; Ahn SM; Uhn L; Skjodt N; Kovalchuk O; Scheibye-Knudsen M; Zhavoronkov A J Gerontol A Biol Sci Med Sci; 2018 Oct; 73(11):1482-1490. PubMed ID: 29340580 [TBL] [Abstract][Full Text] [Related]
9. Small immunological clocks identified by deep learning and gradient boosting. Kalyakulina A; Yusipov I; Kondakova E; Bacalini MG; Franceschi C; Vedunova M; Ivanchenko M Front Immunol; 2023; 14():1177611. PubMed ID: 37691946 [TBL] [Abstract][Full Text] [Related]
10. Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock. Ahadi S; Wilson KA; Babenko B; McLean CY; Bryant D; Pritchard O; Kumar A; Carrera EM; Lamy R; Stewart JM; Varadarajan A; Berndl M; Kapahi P; Bashir A Elife; 2023 Apr; 12():. PubMed ID: 36975205 [TBL] [Abstract][Full Text] [Related]
11. Psychological aging, depression, and well-being. Mitina M; Young S; Zhavoronkov A Aging (Albany NY); 2020 Sep; 12(18):18765-18777. PubMed ID: 32950973 [TBL] [Abstract][Full Text] [Related]
12. Age and life expectancy clocks based on machine learning analysis of mouse frailty. Schultz MB; Kane AE; Mitchell SJ; MacArthur MR; Warner E; Vogel DS; Mitchell JR; Howlett SE; Bonkowski MS; Sinclair DA Nat Commun; 2020 Sep; 11(1):4618. PubMed ID: 32934233 [TBL] [Abstract][Full Text] [Related]
13. Assessing the rate of aging to monitor aging itself. Xia X; Wang Y; Yu Z; Chen J; Han JJ Ageing Res Rev; 2021 Aug; 69():101350. PubMed ID: 33940202 [TBL] [Abstract][Full Text] [Related]
14. Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. Galkin F; Mamoshina P; Aliper A; Putin E; Moskalev V; Gladyshev VN; Zhavoronkov A iScience; 2020 Jun; 23(6):101199. PubMed ID: 32534441 [TBL] [Abstract][Full Text] [Related]
15. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705 [TBL] [Abstract][Full Text] [Related]
16. Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. Lehallier B; Shokhirev MN; Wyss-Coray T; Johnson AA Aging Cell; 2020 Nov; 19(11):e13256. PubMed ID: 33031577 [TBL] [Abstract][Full Text] [Related]
17. Aging and speed of behavior: possible consequences for psychological functioning. Birren JE; Fisher LM Annu Rev Psychol; 1995; 46():329-53. PubMed ID: 7872732 [TBL] [Abstract][Full Text] [Related]
18. Decoding the role of transcriptomic clocks in the human prefrontal cortex. Martínez-Magaña JJ; Krystal JH; Girgenti MJ; Núnez-Ríos DL; Nagamatsu ST; Andrade-Brito DE; ; Montalvo-Ortiz JL medRxiv; 2023 Apr; ():. PubMed ID: 37163025 [TBL] [Abstract][Full Text] [Related]
19. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Putin E; Mamoshina P; Aliper A; Korzinkin M; Moskalev A; Kolosov A; Ostrovskiy A; Cantor C; Vijg J; Zhavoronkov A Aging (Albany NY); 2016 May; 8(5):1021-33. PubMed ID: 27191382 [TBL] [Abstract][Full Text] [Related]
20. Behavioral determinants of healthy aging: good news for the baby boomer generation. Hartman-Stein PE; Potkanowicz ES Online J Issues Nurs; 2003; 8(2):6. PubMed ID: 12795635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]