These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33303772)

  • 1. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.
    Dewandre A; Rivero-Rodriguez J; Vitry Y; Sobac B; Scheid B
    Sci Rep; 2020 Dec; 10(1):21616. PubMed ID: 33303772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device.
    Shen C; Liu F; Wu L; Yu C; Yu W
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System.
    Wu Y; Qian X; Zhang M; Dong Y; Sun S; Wang X
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.
    Josephides DN; Sajjadi S
    Langmuir; 2015 Jan; 31(3):1218-24. PubMed ID: 25517938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed fittings and fluidic modules for customizable droplet generators.
    Vijayan S; Hashimoto M
    RSC Adv; 2019 Jan; 9(5):2822-2828. PubMed ID: 35520507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry Effects of Axisymmetric Flow-Focusing Microchannels for Single Cell Encapsulation.
    Nooranidoost M; Kumar R
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31480646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Intersection Angle of Input Channels in Droplet Generators.
    Kim GB; Park YR; Kim SJ; Park KH
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy.
    Bardin D; Martz TD; Sheeran PS; Shih R; Dayton PA; Lee AP
    Lab Chip; 2011 Dec; 11(23):3990-8. PubMed ID: 22011845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Newtonian Droplet Generation in a Cross-Junction Microfluidic Channel.
    Fatehifar M; Revell A; Jabbari M
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device.
    Hu Q; Jiang T; Jiang H
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32033467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and Dynamics of Janus Droplets in Shear-Thinning Fluid Flow in a Double Y-Type Microchannel.
    Bai F; Zhang H; Li X; Li F; Joo SW
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillating dispersed-phase co-flow microfluidic droplet generation: jet length reduction effect.
    Shams Khorrami A; Rezai P
    Soft Matter; 2018 Dec; 14(48):9870-9876. PubMed ID: 30474087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers.
    Warr CA; Hinnen HS; Avery S; Cate RJ; Nordin GP; Pitt WG
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D printed size-tunable flow-focusing droplet microdevice to produce cell-laden hydrogel microspheres.
    Nguyen HQ; Seo TS
    Anal Chim Acta; 2022 Feb; 1192():339344. PubMed ID: 35057943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.