These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33303802)

  • 1. Amino acid torsion angles enable prediction of protein fold classification.
    Tian K; Zhao X; Wan X; Yau SS
    Sci Rep; 2020 Dec; 10(1):21773. PubMed ID: 33303802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Effective Cumulative Torsion Angles Model for Prediction of Protein Folding Rates.
    Li Y; Zhang Y; Lv J
    Protein Pept Lett; 2020; 27(4):321-328. PubMed ID: 31612815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs.
    Chen K; Kurgan LA; Ruan J
    BMC Struct Biol; 2007 Apr; 7():25. PubMed ID: 17437643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising.
    Yu B; Lou L; Li S; Zhang Y; Qiu W; Wu X; Wang M; Tian B
    J Mol Graph Model; 2017 Sep; 76():260-273. PubMed ID: 28743071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid distribution rules predict protein fold: protein grammar for beta-strand sandwich-like structures.
    Kister A
    Biomolecules; 2015 Jan; 5(1):41-59. PubMed ID: 25625198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of contacts from correlated sequence substitutions.
    Taylor WR; Hamilton RS; Sadowski MI
    Curr Opin Struct Biol; 2013 Jun; 23(3):473-9. PubMed ID: 23680395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-value prediction of backbone torsion angles.
    Xue B; Dor O; Faraggi E; Zhou Y
    Proteins; 2008 Jul; 72(1):427-33. PubMed ID: 18214956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are the same or different amino acid residues responsible for correct and incorrect protein folding?
    Galzitskaya OV
    Biochemistry (Mosc); 2009 Feb; 74(2):186-93. PubMed ID: 19267674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid network for the discrimination of native protein structures from decoys.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2014; 15(6):522-8. PubMed ID: 25059328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein structural classes using support vector machines.
    Sun XD; Huang RB
    Amino Acids; 2006 Jun; 30(4):469-75. PubMed ID: 16622605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical model for predicting protein folding rates from amino acid sequence with structural class information.
    Gromiha MM
    J Chem Inf Model; 2005; 45(2):494-501. PubMed ID: 15807515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The unfoldomics decade: an update on intrinsically disordered proteins.
    Dunker AK; Oldfield CJ; Meng J; Romero P; Yang JY; Chen JW; Vacic V; Obradovic Z; Uversky VN
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S1. PubMed ID: 18831774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved protein structure prediction using potentials from deep learning.
    Senior AW; Evans R; Jumper J; Kirkpatrick J; Sifre L; Green T; Qin C; Žídek A; Nelson AWR; Bridgland A; Penedones H; Petersen S; Simonyan K; Crossan S; Kohli P; Jones DT; Silver D; Kavukcuoglu K; Hassabis D
    Nature; 2020 Jan; 577(7792):706-710. PubMed ID: 31942072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-class protein fold classification using a new ensemble machine learning approach.
    Tan AC; Gilbert D; Deville Y
    Genome Inform; 2003; 14():206-17. PubMed ID: 15706535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved key amino acid positions (CKAAPs) derived from the analysis of common substructures in proteins.
    Reddy BV; Li WW; Shindyalov IN; Bourne PE
    Proteins; 2001 Feb; 42(2):148-63. PubMed ID: 11119639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.