BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33303880)

  • 21. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition.
    Coppola V; Musumeci M; Patrizii M; Cannistraci A; Addario A; Maugeri-Saccà M; Biffoni M; Francescangeli F; Cordenonsi M; Piccolo S; Memeo L; Pagliuca A; Muto G; Zeuner A; De Maria R; Bonci D
    Oncogene; 2013 Apr; 32(14):1843-53. PubMed ID: 22614007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism.
    Shi R; Xiao H; Yang T; Chang L; Tian Y; Wu B; Xu H
    Front Med; 2014 Dec; 8(4):456-63. PubMed ID: 25363395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells.
    Liu R; Liu C; Zhang D; Liu B; Chen X; Rycaj K; Jeter C; Calhoun-Davis T; Li Y; Yang T; Wang J; Tang DG
    Oncotarget; 2016 Aug; 7(35):56628-56642. PubMed ID: 27447749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential expression of epithelial and mesenchymal proteins in a panel of prostate cancer cell lines.
    Murali AK; Norris JS
    J Urol; 2012 Aug; 188(2):632-8. PubMed ID: 22704442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells.
    Desai B; Rogers MJ; Chellaiah MA
    Mol Cancer; 2007 Mar; 6():18. PubMed ID: 17343740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7.
    Fang XJ; Jiang H; Zhao XP; Jiang WM
    BMC Cancer; 2011 Jul; 11():290. PubMed ID: 21749678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.
    Fernández-Martínez AB; Bajo AM; Isabel Arenas M; Sánchez-Chapado M; Prieto JC; Carmena MJ
    Cancer Lett; 2010 Dec; 299(1):11-21. PubMed ID: 20709445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Up-regulation of miR-888-5p in hepatocellular carcinoma cell lines and its effect on malignant characteristics of cells.
    Hao E; Yu J; Xie S; Zhang W; Wang G
    J Biol Regul Homeost Agents; 2017; 31(1):163-169. PubMed ID: 28337887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting SMAD3 for inhibiting prostate cancer metastasis.
    Xia Q; Li C; Bian P; Wang J; Dong S
    Tumour Biol; 2014 Sep; 35(9):8537-41. PubMed ID: 25056536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA interference mediated suppression of TRPV6 inhibits the progression of prostate cancer
    Kim DY; Kim SH; Yang EK
    Investig Clin Urol; 2021 Jul; 62(4):447-454. PubMed ID: 34085788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MiR-520b as a novel molecular target for suppressing stemness phenotype of head-neck cancer by inhibiting CD44.
    Lu YC; Cheng AJ; Lee LY; You GR; Li YL; Chen HY; Chang JT
    Sci Rep; 2017 May; 7(1):2042. PubMed ID: 28515423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TERF1 downregulation promotes the migration and invasion of the PC3 prostate cancer cell line as a target of miR‑155.
    Chen W; He LN; Liang Y; Zeng X; Wu CP; Su MQ; Cheng Y; Liu JH
    Mol Med Rep; 2020 Dec; 22(6):5209-5218. PubMed ID: 33174061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2.
    Colden M; Dar AA; Saini S; Dahiya PV; Shahryari V; Yamamura S; Tanaka Y; Stein G; Dahiya R; Majid S
    Cell Death Dis; 2017 Jan; 8(1):e2572. PubMed ID: 28125091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis.
    Josson S; Gururajan M; Sung SY; Hu P; Shao C; Zhau HE; Liu C; Lichterman J; Duan P; Li Q; Rogatko A; Posadas EM; Haga CL; Chung LW
    Oncogene; 2015 May; 34(21):2690-9. PubMed ID: 25065597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High expression of DDX20 enhances the proliferation and metastatic potential of prostate cancer cells through the NF-κB pathway.
    Chen W; Zhou P; Li X
    Int J Mol Med; 2016 Jun; 37(6):1551-7. PubMed ID: 27121695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194.
    Zhang C; Shu L; Kim H; Khor TO; Wu R; Li W; Kong AN
    Mol Nutr Food Res; 2016 Jun; 60(6):1427-36. PubMed ID: 26820911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The transcription factor SPDEF suppresses prostate tumor metastasis.
    Steffan JJ; Koul S; Meacham RB; Koul HK
    J Biol Chem; 2012 Aug; 287(35):29968-78. PubMed ID: 22761428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of microRNAs during prostatic tumorigenesis and tumor progression.
    Fang YX; Gao WQ
    Oncogene; 2014 Jan; 33(2):135-47. PubMed ID: 23455326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction.
    Najy AJ; Day KC; Day ML
    Cancer Res; 2008 Feb; 68(4):1092-9. PubMed ID: 18281484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silencing of MBD1 and MeCP2 in prostate-cancer-derived PC3 cells produces differential gene expression profiles and cellular phenotypes.
    Yaqinuddin A; Abbas F; Naqvi SZ; Bashir MU; Qazi R; Qureshi SA
    Biosci Rep; 2008 Dec; 28(6):319-26. PubMed ID: 18666890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.