BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33303911)

  • 1. Ultraviolet A irradiation induces ultraweak photon emission with characteristic spectral patterns from biomolecules present in human skin.
    Tsuchida K; Kobayashi M
    Sci Rep; 2020 Dec; 10(1):21667. PubMed ID: 33303911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin.
    Tsuchida K; Iwasa T; Kobayashi M
    J Photochem Photobiol B; 2019 Sep; 198():111562. PubMed ID: 31349151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission measurement. II: biological validation on ultraviolet A-stressed skin.
    Hagens R; Khabiri F; Schreiner V; Wenck H; Wittern KP; Duchstein HJ; Mei W
    Skin Res Technol; 2008 Feb; 14(1):112-20. PubMed ID: 18211609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin lightness affects ultraviolet A-induced oxidative stress: Evaluation using ultraweak photon emission measurement.
    Tsuchida K; Sakiyama N; Ogura Y; Kobayashi M
    Exp Dermatol; 2023 Feb; 32(2):146-153. PubMed ID: 36256509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement. I: mechanisms of UPE of biological materials.
    Khabiri F; Hagens R; Smuda C; Soltau A; Schreiner V; Wenck H; Wittern KP; Duchstein HJ; Mei W
    Skin Res Technol; 2008 Feb; 14(1):103-11. PubMed ID: 18211608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of subclinical chronic sun damage in the skin via the detection of long-lasting ultraweak photon emission.
    Gabe Y; Takeda K; Tobiishi M; Kikuchi S; Tsuda K; Haryuu Y; Nakajima Y; Inomata Y; Nakamura S; Murase D; Tokunaga S; Miyaki M; Takahashi Y
    Skin Res Technol; 2021 Nov; 27(6):1064-1071. PubMed ID: 33998715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploitation of long-lasting ultraweak photon emission to estimate skin photodamage after ultraviolet exposure.
    Gabe Y; Murase D; Kasamatsu S; Osanai O; Takahashi Y; Hachiya A
    Skin Res Technol; 2021 May; 27(3):309-315. PubMed ID: 33022822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using ultra-weak photon emission to determine the effect of oligomeric proanthocyanidins on oxidative stress of human skin.
    Van Wijk EP; Van Wijk R; Bosman S
    J Photochem Photobiol B; 2010 Mar; 98(3):199-206. PubMed ID: 20138538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between skin aging and steady state ultraweak photon emission as an indicator of skin oxidative stress in vivo.
    Gabe Y; Osanai O; Takema Y
    Skin Res Technol; 2014 Aug; 20(3):315-21. PubMed ID: 24283536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress in human facial skin observed by ultraweak photon emission imaging and its correlation with biophysical properties of skin.
    Tsuchida K; Kobayashi M
    Sci Rep; 2020 Jun; 10(1):9626. PubMed ID: 32541901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.
    Prasad A; Pospíšil P
    J Biomed Opt; 2012 Aug; 17(8):085004. PubMed ID: 23224187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts.
    Hseu YC; Korivi M; Lin FY; Li ML; Lin RW; Wu JJ; Yang HL
    J Dermatol Sci; 2018 May; 90(2):123-134. PubMed ID: 29395579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-site recording and spectral analysis of spontaneous photon emission from human body.
    Wijk EP; Wijk RV
    Forsch Komplementarmed Klass Naturheilkd; 2005 Apr; 12(2):96-106. PubMed ID: 15947468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of ultra-weak photon emission in dermatology.
    Ou-Yang H
    J Photochem Photobiol B; 2014 Oct; 139():63-70. PubMed ID: 24275519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light-induced lipid oxidation and the antioxidant property of hypotaurine: evaluation via measuring ultraweak photon emission.
    Tsuchida K; Sakiyama N
    Photochem Photobiol Sci; 2023 Feb; 22(2):345-356. PubMed ID: 36271182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body.
    Kobayashi M; Iwasa T; Tada M
    J Photochem Photobiol B; 2016 Jun; 159():186-90. PubMed ID: 27082276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts.
    Avola R; Graziano ACE; Pannuzzo G; Bonina F; Cardile V
    J Cell Physiol; 2019 Jun; 234(6):9065-9076. PubMed ID: 30367495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet A radiation-induced biological effects in human skin: relevance for photoaging and photodermatosis.
    Krutmann J
    J Dermatol Sci; 2000 Mar; 23 Suppl 1():S22-6. PubMed ID: 10764987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl SX, prevent the cutaneous detrimental effects of UV exposure: a review of clinical study results.
    Fourtanier A; Moyal D; Seité S
    Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):164-74. PubMed ID: 18717957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of HSP27 against UVB-induced photoaging in rat skin.
    Liu Y; Huang X; Wang P; Pan Y; Cao D; Liu C; Chen A
    Biochem Biophys Res Commun; 2019 May; 512(3):435-440. PubMed ID: 30902393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.