These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33303955)

  • 1. Nucleation and stability of skyrmions in three-dimensional chiral nanostructures.
    Liu Y; Cai N; Yu X; Xuan S
    Sci Rep; 2020 Dec; 10(1):21717. PubMed ID: 33303955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures.
    Boulle O; Vogel J; Yang H; Pizzini S; de Souza Chaves D; Locatelli A; Menteş TO; Sala A; Buda-Prejbeanu LD; Klein O; Belmeguenai M; Roussigné Y; Stashkevich A; Chérif SM; Aballe L; Foerster M; Chshiev M; Auffret S; Miron IM; Gaudin G
    Nat Nanotechnol; 2016 May; 11(5):449-54. PubMed ID: 26809057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film.
    Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD
    Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures.
    Sampaio J; Cros V; Rohart S; Thiaville A; Fert A
    Nat Nanotechnol; 2013 Nov; 8(11):839-44. PubMed ID: 24162000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic skyrmions in FePt nanoparticles having Reuleaux 3D geometry: a micromagnetic simulation study.
    Stavrou VD; Kourounis D; Dimakopoulos K; Panagiotopoulos I; Gergidis LN
    Nanoscale; 2019 Nov; 11(42):20102-20114. PubMed ID: 31612890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films.
    Ezawa M
    Phys Rev Lett; 2010 Nov; 105(19):197202. PubMed ID: 21231193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Skyrmion Generation via a Vertical Nanocontact in a 2D Magnet-Based Heterostructure.
    Powalla L; Birch MT; Litzius K; Wintz S; Schulz F; Weigand M; Scholz T; Lotsch BV; Kern K; Schütz G; Burghard M
    Nano Lett; 2022 Dec; 22(23):9236-9243. PubMed ID: 36400013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precursor skyrmion states near the ordering temperatures of chiral magnets.
    Leonov AO
    Phys Chem Chem Phys; 2023 Nov; 25(42):28691-28702. PubMed ID: 37849353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current-Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet.
    Yu X; Morikawa D; Tokunaga Y; Kubota M; Kurumaji T; Oike H; Nakamura M; Kagawa F; Taguchi Y; Arima TH; Kawasaki M; Tokura Y
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An achiral ferromagnetic/chiral antiferromagnetic bilayer system leading to controllable size and density of skyrmions.
    Morvan FJ; Luo HB; Yang HX; Zhang X; Zhou Y; Zhao GP; Xia WX; Liu JP
    Sci Rep; 2019 Feb; 9(1):2970. PubMed ID: 30814603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of skyrmion in disordered chiral magnet of thin film form.
    Koshibae W; Nagaosa N
    Sci Rep; 2019 Mar; 9(1):5111. PubMed ID: 30911022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu_{2}OSeO_{3}.
    Müller J; Rajeswari J; Huang P; Murooka Y; Rønnow HM; Carbone F; Rosch A
    Phys Rev Lett; 2017 Sep; 119(13):137201. PubMed ID: 29341720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation.
    Fallon K; Hughes S; Zeissler K; Legrand W; Ajejas F; Maccariello D; McFadzean S; Smith W; McGrouther D; Collin S; Reyren N; Cros V; Marrows CH; McVitie S
    Small; 2020 Apr; 16(13):e1907450. PubMed ID: 32141234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave field frequency and current density modulated skyrmion-chain in nanotrack.
    Ma F; Ezawa M; Zhou Y
    Sci Rep; 2015 Oct; 5():15154. PubMed ID: 26468929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation of Topologically-Protected Supercooled Skyrmions in a Thin Plate of Chiral Magnet Co
    Morikawa D; Yu X; Karube K; Tokunaga Y; Taguchi Y; Arima TH; Tokura Y
    Nano Lett; 2017 Mar; 17(3):1637-1641. PubMed ID: 28135106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet.
    Li L; Song D; Wang W; Zheng F; Kovács A; Tian M; Dunin-Borkowski RE; Du H
    Adv Mater; 2023 Apr; 35(16):e2209798. PubMed ID: 36573473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skyrmions and Spin Waves in Magneto-Ferroelectric Superlattices.
    Sharafullin IF; Diep HT
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Direct-Write Skyrmion Nanolithography.
    Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS
    ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of morphology and formation of highly geometrically confined magnetic skyrmions.
    Jin C; Li ZA; Kovács A; Caron J; Zheng F; Rybakov FN; Kiselev NS; Du H; Blügel S; Tian M; Zhang Y; Farle M; Dunin-Borkowski RE
    Nat Commun; 2017 Jun; 8():15569. PubMed ID: 28580935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.