These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33304220)
1. Demonstration of electron diffraction from membrane protein crystals grown in a lipidic mesophase after lamella preparation by focused ion beam milling at cryogenic temperatures. Polovinkin V; Khakurel K; Babiak M; Angelov B; Schneider B; Dohnalek J; Andreasson J; Hajdu J J Appl Crystallogr; 2020 Dec; 53(Pt 6):1416-1424. PubMed ID: 33304220 [TBL] [Abstract][Full Text] [Related]
2. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. Li D; Boland C; Aragao D; Walsh K; Caffrey M J Vis Exp; 2012 Sep; (67):e4001. PubMed ID: 22971942 [TBL] [Abstract][Full Text] [Related]
3. A robust approach for MicroED sample preparation of lipidic cubic phase embedded membrane protein crystals. Martynowycz MW; Shiriaeva A; Clabbers MTB; Nicolas WJ; Weaver SJ; Hattne J; Gonen T Nat Commun; 2023 Feb; 14(1):1086. PubMed ID: 36841804 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the milling characteristics of different focused-ion-beam sources assessed by three-dimensional electron diffraction from crystal lamellae. Parkhurst JM; Crawshaw AD; Siebert CA; Dumoux M; Owen CD; Nunes P; Waterman D; Glen T; Stuart DI; Naismith JH; Evans G IUCrJ; 2023 May; 10(Pt 3):270-287. PubMed ID: 36952226 [TBL] [Abstract][Full Text] [Related]
5. High pressure freezing and cryo-sectioning can be used for protein structure determination by electron diffraction. Moriscot C; Schoehn G; Housset D Ultramicroscopy; 2023 Dec; 254():113834. PubMed ID: 37666105 [TBL] [Abstract][Full Text] [Related]
6. Quantification of gallium cryo-FIB milling damage in biological lamellae. Lucas BA; Grigorieff N Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2301852120. PubMed ID: 37216561 [TBL] [Abstract][Full Text] [Related]
7. A cryogenic, coincident fluorescence, electron, and ion beam microscope. Boltje DB; Hoogenboom JP; Jakobi AJ; Jensen GJ; Jonker CTH; Kaag MJ; Koster AJ; Last MGF; de Agrela Pinto C; Plitzko JM; Raunser S; Tacke S; Wang Z; van der Wee EB; Wepf R; den Hoedt S Elife; 2022 Oct; 11():. PubMed ID: 36305590 [TBL] [Abstract][Full Text] [Related]
8. Mind the gap: Micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. Wolff G; Limpens RWAL; Zheng S; Snijder EJ; Agard DA; Koster AJ; Bárcena M J Struct Biol; 2019 Dec; 208(3):107389. PubMed ID: 31536774 [TBL] [Abstract][Full Text] [Related]
9. Focused ion beam milling and MicroED structure determination of metal-organic framework crystals. Bardin AA; Haymaker A; Banihashemi F; Lin JYS; Martynowycz MW; Nannenga BL Ultramicroscopy; 2024 Mar; 257():113905. PubMed ID: 38086288 [TBL] [Abstract][Full Text] [Related]
10. Preparing Lamellae from Vitreous Biological Samples using a Dual-Beam Scanning Electron Microscope for Cryo-Electron Tomography. Bisson C; Hecksel CW; Gilchrist JB; Carbajal MA; Fleck RA J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424237 [TBL] [Abstract][Full Text] [Related]
11. The reduction of FIB damage on cryo-lamella by lowering energy of ion beam revealed by a quantitative analysis. Yang Q; Wu C; Zhu D; Li J; Cheng J; Zhang X Structure; 2023 Oct; 31(10):1275-1281.e4. PubMed ID: 37527655 [TBL] [Abstract][Full Text] [Related]
12. Using focus ion beam to prepare crystal lamella for electron diffraction. Zhou H; Luo Z; Li X J Struct Biol; 2019 Mar; 205(3):59-64. PubMed ID: 30794865 [TBL] [Abstract][Full Text] [Related]
13. Qualitative Analyses of Polishing and Precoating FIB Milled Crystals for MicroED. Martynowycz MW; Zhao W; Hattne J; Jensen GJ; Gonen T Structure; 2019 Oct; 27(10):1594-1600.e2. PubMed ID: 31422911 [TBL] [Abstract][Full Text] [Related]
14. Automated cryo-lamella preparation for high-throughput in-situ structural biology. Buckley G; Gervinskas G; Taveneau C; Venugopal H; Whisstock JC; de Marco A J Struct Biol; 2020 May; 210(2):107488. PubMed ID: 32126263 [TBL] [Abstract][Full Text] [Related]
15. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. Li D; Boland C; Walsh K; Caffrey M J Vis Exp; 2012 Sep; (67):e4000. PubMed ID: 22971907 [TBL] [Abstract][Full Text] [Related]
16. A fast, simple and robust protocol for growing crystals in the lipidic cubic phase. Aherne M; Lyons JA; Caffrey M J Appl Crystallogr; 2012 Dec; 45(Pt 6):1330-1333. PubMed ID: 23162163 [TBL] [Abstract][Full Text] [Related]
17. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. Nogly P; James D; Wang D; White TA; Zatsepin N; Shilova A; Nelson G; Liu H; Johansson L; Heymann M; Jaeger K; Metz M; Wickstrand C; Wu W; Båth P; Berntsen P; Oberthuer D; Panneels V; Cherezov V; Chapman H; Schertler G; Neutze R; Spence J; Moraes I; Burghammer M; Standfuss J; Weierstall U IUCrJ; 2015 Mar; 2(Pt 2):168-76. PubMed ID: 25866654 [TBL] [Abstract][Full Text] [Related]
18. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Caffrey M; Li D; Dukkipati A Biochemistry; 2012 Aug; 51(32):6266-88. PubMed ID: 22783824 [TBL] [Abstract][Full Text] [Related]
19. Advanced cryo-tomography workflow developments - correlative microscopy, milling automation and cryo-lift-out. Kuba J; Mitchels J; Hovorka M; Erdmann P; Berka L; Kirmse R; KÖnig J; DE Bock J; Goetze B; Rigort A J Microsc; 2021 Feb; 281(2):112-124. PubMed ID: 32557536 [TBL] [Abstract][Full Text] [Related]
20. Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED. Zhu L; Bu G; Jing L; Shi D; Lee MY; Gonen T; Liu W; Nannenga BL Structure; 2020 Oct; 28(10):1149-1159.e4. PubMed ID: 32735770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]