These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33304452)

  • 1. Accurate prediction of RNA 5-hydroxymethylcytosine modification by utilizing novel position-specific gapped k-mer descriptors.
    Ahmed S; Hossain Z; Uddin M; Taherzadeh G; Sharma A; Shatabda S; Dehzangi A
    Comput Struct Biotechnol J; 2020; 18():3528-3538. PubMed ID: 33304452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.
    Liu Y; Chen D; Su R; Chen W; Wei L
    Front Bioeng Biotechnol; 2020; 8():227. PubMed ID: 32296686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iR5hmcSC: Identifying RNA 5-hydroxymethylcytosine with multiple features based on stacking learning.
    Zhang S; Shi H
    Comput Biol Chem; 2021 Dec; 95():107583. PubMed ID: 34562726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification.
    Zou H
    J Bioinform Comput Biol; 2022 Aug; 20(4):2250017. PubMed ID: 35918795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. i5hmCVec: Identifying 5-Hydroxymethylcytosine Sites of
    Liu HY; Du PF
    Front Genet; 2022; 13():896925. PubMed ID: 35591855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components.
    Al Maruf MA; Shatabda S
    Genomics; 2019 Jul; 111(4):966-972. PubMed ID: 29935224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Linear Regression Predictor for Identifying N
    Zhuang YY; Liu HJ; Song X; Ju Y; Peng H
    Mol Ther Nucleic Acids; 2019 Dec; 18():673-680. PubMed ID: 31707204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust k-mer frequency estimation using gapped k-mers.
    Ghandi M; Mohammad-Noori M; Beer MA
    J Math Biol; 2014 Aug; 69(2):469-500. PubMed ID: 23861010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting.
    Shi H; Zhang S; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombination spot identification Based on gapped k-mers.
    Wang R; Xu Y; Liu B
    Sci Rep; 2016 Mar; 6():23934. PubMed ID: 27030570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OriC-ENS: A sequence-based ensemble classifier for predicting origin of replication in S. cerevisiae.
    Azim SM; Haque MR; Shatabda S
    Comput Biol Chem; 2021 Jun; 92():107502. PubMed ID: 33962169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeakr: an exact and approximate k-mer counting system.
    Pandey P; Bender MA; Johnson R; Patro R; Berger B
    Bioinformatics; 2018 Feb; 34(4):568-575. PubMed ID: 29444235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KITSUNE: A Tool for Identifying Empirically Optimal K-mer Length for Alignment-Free Phylogenomic Analysis.
    Pornputtapong N; Acheampong DA; Patumcharoenpol P; Jenjaroenpun P; Wongsurawat T; Jun SR; Yongkiettrakul S; Chokesajjawatee N; Nookaew I
    Front Bioeng Biotechnol; 2020; 8():556413. PubMed ID: 33072720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M6APred-EL: A Sequence-Based Predictor for Identifying N6-methyladenosine Sites Using Ensemble Learning.
    Wei L; Chen H; Su R
    Mol Ther Nucleic Acids; 2018 Sep; 12():635-644. PubMed ID: 30081234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein sequence information extraction and subcellular localization prediction with gapped k-Mer method.
    Yao YH; Lv YP; Li L; Xu HM; Ji BB; Chen J; Li C; Liao B; Nan XY
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):719. PubMed ID: 31888447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and Quantification of 5moU RNA Modification from Direct RNA Sequencing Data.
    Li J; Sun F; He K; Zhang L; Meng J; Huang D; Zhang Y
    Curr Genomics; 2024 May; 25(3):212-225. PubMed ID: 39086998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Information-Entropy Position-Weighted
    Wu YQ; Yu ZG; Tang RB; Han GS; Anh VV
    Front Genet; 2021; 12():766496. PubMed ID: 34745231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PseUI: Pseudouridine sites identification based on RNA sequence information.
    He J; Fang T; Zhang Z; Huang B; Zhu X; Xiong Y
    BMC Bioinformatics; 2018 Aug; 19(1):306. PubMed ID: 30157750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCMBT: a k-mer Counter based on Multiple Burst Trees.
    Mamun AA; Pal S; Rajasekaran S
    Bioinformatics; 2016 Sep; 32(18):2783-90. PubMed ID: 27283950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.