These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33304461)
1. Predicting favorable landing pads for targeted integrations in Chinese hamster ovary cell lines by learning stability characteristics from random transgene integrations. Dhiman H; Campbell M; Melcher M; Smith KD; Borth N Comput Struct Biotechnol J; 2020; 18():3632-3648. PubMed ID: 33304461 [TBL] [Abstract][Full Text] [Related]
2. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Zeh N; Schmidt M; Schulz P; Fischer S Biotechnol Adv; 2024 Oct; 75():108402. PubMed ID: 38950872 [TBL] [Abstract][Full Text] [Related]
3. Nanopore Cas9-targeted sequencing enables accurate and simultaneous identification of transgene integration sites, their structure and epigenetic status in recombinant Chinese hamster ovary cells. Leitner K; Motheramgari K; Borth N; Marx N Biotechnol Bioeng; 2023 Sep; 120(9):2403-2418. PubMed ID: 36938677 [TBL] [Abstract][Full Text] [Related]
4. Enhancing stability of recombinant CHO cells by CRISPR/Cas9-mediated site-specific integration into regions with distinct histone modifications. Hertel O; Neuss A; Busche T; Brandt D; Kalinowski J; Bahnemann J; Noll T Front Bioeng Biotechnol; 2022; 10():1010719. PubMed ID: 36312557 [TBL] [Abstract][Full Text] [Related]
5. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Hilliard W; Lee KH Biotechnol Bioeng; 2021 Feb; 118(2):659-675. PubMed ID: 33049068 [TBL] [Abstract][Full Text] [Related]
6. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Stadermann A; Gamer M; Fieder J; Lindner B; Fehrmann S; Schmidt M; Schulz P; Gorr IH Biotechnol Bioeng; 2022 Mar; 119(3):868-880. PubMed ID: 34935125 [TBL] [Abstract][Full Text] [Related]
7. Revealing Key Determinants of Clonal Variation in Transgene Expression in Recombinant CHO Cells Using Targeted Genome Editing. Lee JS; Park JH; Ha TK; Samoudi M; Lewis NE; Palsson BO; Kildegaard HF; Lee GM ACS Synth Biol; 2018 Dec; 7(12):2867-2878. PubMed ID: 30388888 [TBL] [Abstract][Full Text] [Related]
8. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
9. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540 [TBL] [Abstract][Full Text] [Related]
10. A splinkerette PCR-based genome walking technique for the identification of transgene integration sites in CHO cells. Han HJ; Kim DH; Baik JY J Biotechnol; 2023 Jul; 371-372():1-9. PubMed ID: 37257509 [TBL] [Abstract][Full Text] [Related]
11. Recurring genomic structural variation leads to clonal instability and loss of productivity. Bandyopadhyay AA; O'Brien SA; Zhao L; Fu HY; Vishwanathan N; Hu WS Biotechnol Bioeng; 2019 Jan; 116(1):41-53. PubMed ID: 30144379 [TBL] [Abstract][Full Text] [Related]
12. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells. Kang SY; Kim YG; Kang S; Lee HW; Lee EG Biotechnol J; 2016 May; 11(5):633-41. PubMed ID: 26762773 [TBL] [Abstract][Full Text] [Related]
13. Context-dependent genomic locus effects on antibody production in recombinant Chinese hamster ovary cells generated through random integration. Woo HJ; Kim J; Kim SM; Kim D; Moon JY; Park D; Lee JS Comput Struct Biotechnol J; 2024 Dec; 23():1654-1665. PubMed ID: 38680870 [TBL] [Abstract][Full Text] [Related]
14. Accumulative scFv-Fc antibody gene integration into the hprt chromosomal locus of Chinese hamster ovary cells. Wang X; Kawabe Y; Kato R; Hada T; Ito A; Yamana Y; Kondo M; Kamihira M J Biosci Bioeng; 2017 Nov; 124(5):583-590. PubMed ID: 28662917 [TBL] [Abstract][Full Text] [Related]
15. A compendium of stable hotspots in the CHO genome. Hilliard W; Lee KH Biotechnol Bioeng; 2023 Aug; 120(8):2133-2143. PubMed ID: 37014810 [TBL] [Abstract][Full Text] [Related]
16. Implementation of ubiquitous chromatin opening elements as artificial integration sites for CRISPR/Cas9-mediated knock-in in mammalian cells. Kim SM; Lee J; Lee JS Eng Life Sci; 2023 Apr; 23(4):e2200047. PubMed ID: 37025191 [TBL] [Abstract][Full Text] [Related]
17. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site. Kawabe Y; Inao T; Komatsu S; Huang G; Ito A; Omasa T; Kamihira M J Biosci Bioeng; 2017 Mar; 123(3):390-397. PubMed ID: 27856232 [TBL] [Abstract][Full Text] [Related]
18. Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering. Hamaker NK; Lee KH Curr Opin Chem Eng; 2018 Dec; 22():152-160. PubMed ID: 31086757 [TBL] [Abstract][Full Text] [Related]
19. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. Xu DH; Wang XY; Jia YL; Wang TY; Tian ZW; Feng X; Zhang YN J Cell Mol Med; 2018 Apr; 22(4):2231-2239. PubMed ID: 29441681 [TBL] [Abstract][Full Text] [Related]
20. A chimeric HS4 insulator-scaffold attachment region enhances transgene expression in transfected Chinese hamster ovary cells. Chen SJ; Wang W; Zhang FY; Jia YL; Wang XY; Guo X; Chen SN; Gao JH; Wang TY FEBS Open Bio; 2017 Dec; 7(12):2021-2030. PubMed ID: 29226088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]