BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33304614)

  • 21. On timing-optimized SiPMs for Cherenkov detection to boost low cost time-of-flight PET.
    Gundacker S; Borghi G; Cherry SR; Gola A; Lee D; Merzi S; Penna M; Schulz V; Kwon SI
    Phys Med Biol; 2023 Aug; 68(16):. PubMed ID: 37467766
    [No Abstract]   [Full Text] [Related]  

  • 22. Towards a metamaterial approach for fast timing in PET: experimental proof-of-concept.
    Turtos RM; Gundacker S; Auffray E; Lecoq P
    Phys Med Biol; 2019 Sep; 64(18):185018. PubMed ID: 30978716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET.
    Gundacker S; Auffray E; Pauwels K; Lecoq P
    Phys Med Biol; 2016 Apr; 61(7):2802-37. PubMed ID: 26982798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of cost-effective system designs for long axial field-of-view PET scanners.
    Surti S; Werner ME; Karp JS
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 37084744
    [No Abstract]   [Full Text] [Related]  

  • 25. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation.
    Roncali E; Schmall JP; Viswanath V; Berg E; Cherry SR
    Phys Med Biol; 2014 Apr; 59(8):2023-39. PubMed ID: 24694727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of Depth-of-Interaction-Based Detection Time Correction in Cherenkov Emitter Crystals for TOF-PET.
    He X; Trigila C; Ariño-Estrada G; Roncali E
    IEEE Trans Radiat Plasma Med Sci; 2023 Mar; 7(3):233-240. PubMed ID: 36994147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced optical simulation of scintillation detectors in GATE V8.0: first implementation of a reflectance model based on measured data.
    Stockhoff M; Jan S; Dubois A; Cherry SR; Roncali E
    Phys Med Biol; 2017 Jun; 62(12):L1-L8. PubMed ID: 28452339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo calculations of PET coincidence timing: single and double-ended readout.
    Derenzo SE; Choong WS; Moses WW
    Phys Med Biol; 2015 Sep; 60(18):7309-38. PubMed ID: 26350162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation study of potential time-of-flight capabilities for a multilayer DOI-PET detector with an independent readout structure.
    Watanabe M; Moriya T; Uchida H; Omura T
    Phys Med Biol; 2021 Sep; 66(18):. PubMed ID: 34293731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the temporal resolution limits of scintillation detection from pixellated elements: comparison between experiment and simulation.
    Spanoudaki VCh; Levin CS
    Phys Med Biol; 2011 Feb; 56(3):735-56. PubMed ID: 21239845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First Cerenkov charge-induction (CCI) TlBr detector for TOF-PET and proton range verification.
    Ariño-Estrada G; Mitchell GS; Kim H; Du J; Kwon SI; Cirignano LJ; Shah KS; Cherry SR
    Phys Med Biol; 2019 Aug; 64(17):175001. PubMed ID: 31344688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CNN-based four-layer DOI encoding detector using LYSO and BGO scintillators for small animal PET imaging.
    He W; Zhao Y; Zhao X; Huang W; Zhang L; Prout DL; Chatziioannou AF; Ren Q; Gu Z
    Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 37040784
    [No Abstract]   [Full Text] [Related]  

  • 33. Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET.
    Yeom JY; Vinke R; Levin CS
    Med Phys; 2014 Dec; 41(12):122501. PubMed ID: 25471979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TOF-PET Image Reconstruction With Multiple Timing Kernels Applied on Cherenkov Radiation in BGO.
    Efthimiou N; Kratochwil N; Gundacker S; Polesel A; Salomoni M; Auffray E; Pizzichemi M
    IEEE Trans Radiat Plasma Med Sci; 2020 Sep; 5(5):703-711. PubMed ID: 34541434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polaroid-PET: a PET scanner with detectors fitted with Polaroid for filtering unpolarized optical photons-a Monte Carlo simulation study.
    Sanaat A; Ashrafi-Belgabad A; Zaidi H
    Phys Med Biol; 2020 Dec; 65(23):235044. PubMed ID: 33263320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards time-of-flight PET with a semiconductor detector.
    Ariño-Estrada G; Mitchell GS; Kwon SI; Du J; Kim H; Cirignano LJ; Shah KS; Cherry SR
    Phys Med Biol; 2018 Feb; 63(4):04LT01. PubMed ID: 29364135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physics and technology of time-of-flight PET detectors.
    Schaart DR
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33711831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel depth-of-interaction block detector for positron emission tomography using a dichotomous orthogonal symmetry decoding concept.
    Zhang Y; Yan H; Baghaei H; Wong WH
    Phys Med Biol; 2016 Feb; 61(4):1608-33. PubMed ID: 26836144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronics method to advance the coincidence time resolution with bismuth germanate.
    Cates JW; Levin CS
    Phys Med Biol; 2019 Sep; 64(17):175016. PubMed ID: 31300623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution time-of-flight PET detector with 100 ps coincidence time resolution using a side-coupled phoswich configuration.
    Lee MS; Cates JW; Gonzalez-Montoro A; Levin CS
    Phys Med Biol; 2021 Jun; 66(12):. PubMed ID: 34106089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.